Karl H. Schuleri

Learn More
BACKGROUND Cardiosphere-derived cells (CDCs) reduce scarring after myocardial infarction, increase viable myocardium, and boost cardiac function in preclinical models. We aimed to assess safety of such an approach in patients with left ventricular dysfunction after myocardial infarction. METHODS In the prospective, randomised CArdiosphere-Derived(More)
Although clinical trials of autologous whole bone marrow for cardiac repair demonstrate promising results, many practical and mechanistic issues regarding this therapy remain highly controversial. Here, we report the results of a randomized study of bone-marrow-derived mesenchymal stem cells, administered to pigs, which offer several new insights regarding(More)
BACKGROUND The ability to distinguish dysfunctional but viable myocardium from nonviable tissue has important prognostic implications after myocardial infarction. The purpose of this study was to validate the accuracy of contrast-enhanced multidetector computed tomography (MDCT) for quantifying myocardial necrosis, microvascular obstruction, and chronic(More)
OBJECTIVES This study sought to report full 1-year results, detailed magnetic resonance imaging analysis, and determinants of efficacy in the prospective, randomized, controlled CADUCEUS (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction) trial. BACKGROUND Cardiosphere-derived cells (CDCs) exerted regenerative effects at 6(More)
To assess the signal pattern in T2-weighted images (T2WI) and determine its relation to persistent microvascular obstruction (PMO) and intramyocardial hemorrhage in a porcine model with reperfused acute myocardial infarction. Left anterior descending artery was occluded (90 or 180 min) and reperfused (90 min). T2WI and delayed-enhanced magnetic resonance(More)
The underlying mechanism(s) of improved left ventricular function (LV) due to mesenchymal stem cell (MSC) administration after myocardial infarction (MI) remains highly controversial. Myocardial regeneration and neovascularization, which leads to increased tissue perfusion, are proposed mechanisms. Here we demonstrate that delivery of MSCs 3 days after MI(More)
Granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) are potential new therapies to ameliorate post-myocardial infarction (post-MI) remodeling, as they enhance endogenous cardiac repair mechanisms and decrease cardiomyocyte apoptosis. Because both of these pathways undergo alterations with increasing age, we hypothesized that therapeutic(More)
Until recently, the concept of treating the injured or failing heart by generating new functional myocardium was considered physiologically impossible. Major scientific strides in the past few years have challenged the concept that the heart is a post-mitotic organ, leading to the hypothesis that cardiac regeneration could be therapeutically achieved. Bone(More)
Increased reactive oxygen species (ROS) generation is implicated in cardiac remodeling in heart failure (HF). As xanthine oxidoreductase (XOR) is 1 of the major sources of ROS, we tested whether XOR inhibition could improve cardiac performance and induce reverse remodeling in a model of established HF, the spontaneously hypertensive/HF (SHHF) rat. We(More)
Cardiac myocytes contain two constitutive NO synthase (NOS) isoforms with distinct spatial locations, which allows for isoform-specific regulation. One regulatory mechanism for NOS is substrate (l-arginine) bioavailability. We tested the hypothesis that arginase (Arg), which metabolizes l-arginine, constrains NOS activity in the cardiac myocyte in an(More)