Karl H Obrietan

Learn More
Although Ca2+-stimulated cAMP response element binding protein- (CREB-) dependent transcription has been implicated in growth, differentiation, and neuroplasticity, mechanisms for Ca2+-activated transcription have not been defined. Here, we report that extracellular signal-related protein kinase (ERK) signaling is obligatory for Ca2+-stimulated(More)
Recent studies suggest that the CREB-CRE transcriptional pathway is pivotal in the formation of some types of long-term memory. However, it has not been demonstrated that stimuli that induce learning and memory activate CRE-mediated gene expression. To address this issue, we used a mouse strain transgenic for a CRE-lac Z reporter to examine the effects of(More)
Although the circadian time-keeping properties of the suprachiasmatic nuclei (SCN) require gene expression, little is known about the signal transduction pathways that initiate transcription. Here we report that a brief exposure to light during the subjective night, but not during the subjective day, activates the p44/42 mitogen-activated protein kinase(More)
many MAPK regulators (N-Shc, RasGRF, RasGRP, SynOne of the most intriguing questions in neurobiology GAP, Ca1/DAG GTP exhange factors [GEFs], NF1, is how neurons and synapses encode the long-term N-Ras, and B-Raf) is largely restricted to the CNS. An changes in synaptic efficacy that underlie memory coninitial clue to the role of the ERK/MAPK cascade in the(More)
microRNAs (miRNAs) are a class of small, noncoding RNAs that regulate the stability or translation of mRNA transcripts. Although recent work has implicated miRNAs in development and in disease, the expression and function of miRNAs in the adult mammalian nervous system have not been extensively characterized. Here, we examine the role of two brain-specific(More)
Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synapse growth and plasticity remain largely uncharacterized. Here, we show that microRNA 132 (miR132) is an activity-dependent rapid response gene regulated by the cAMP response(More)
Since its initial characterization over 20 years ago, there has been intense and unwavering interest in understanding the role of the transcription factor cAMP-responsive element binding protein (CREB) in nervous system physiology. Through an array of experimental approaches and model systems, researchers have begun to unravel the complex and multifaceted(More)
A program of stringently-regulated gene expression is thought to be a fundamental component of the circadian clock. Although recent work has implicated a role for E-box-dependent transcription in circadian rhythmicity, the contribution of other enhancer elements has yet to be assessed. Here, we report that cells of the suprachiasmatic nuclei (SCN) exhibit a(More)
Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synaptic plasticity remain largely uncharacterized. We show here that the CREB- and activity-regulated microRNA, miR132, is induced during periods of active synaptogenesis.(More)
Activation of the transcription factor cAMP response element-binding protein (CREB) by neurotrophins is believed to regulate the survival, differentiation, and maturation of neurons in the CNS and PNS. Although phosphorylation of Ser133 is critical for the expression of CREB-regulated genes, the identity of neurotrophin-regulated Ser133 kinases has remained(More)