Karl H. Crowley

Learn More
This work describes a fully printable polyaniline-copper (II) chloride sensor for the detection of hydrogen sulfide gas. The sensing device is composed of screen printed silver interdigitated electrode (IDE) on a flexible PET substrate with inkjet printed layers of polyaniline and copper (II) chloride. The sensor is employed as a chemiresistor with changes(More)
A sensor fabricated from the inkjet-printed deposition of polyaniline nanoparticles onto a screen-printed silver interdigitated electrode was developed for the detection of ammonia in simulated human breath samples. Impedance analysis showed that exposure to ammonia gas could be measured at 962 Hz at which changes in resistance dominate due to the(More)
A sensor for the amperometric detection of aqueous ammonia was fabricated using the inkjet printing of dodecylbenzene sulfonate (DBSA)-doped polyaniline nanoparticles (nanoPANI) onto a screen-printed carbon paste electrode. The combination of the environmentally inert, aqueous nanoparticle dispersion with the inkjet printing technique allowed the rapid(More)
A device for measuring human breath ammonia was developed based on a single use, disposable, inkjet printed ammonia sensor fabricated using polyaniline nanoparticles. The device was optimized for sampling ammonia in human breath samples by addressing issues such as variations in breath sample volume, flow rate, sources of oral ammonia, temperature and(More)
This work describes the fabrication of gas sensors using inkjet printing. Sensors were constructed by building up a film of sensing material, such as polyaniline, from aqueous nanoparticulate dispersions. These films were printed over patterned silver interdigitated array designs for the purposes of conductimetric analysis. Unlike screen printing or(More)
  • 1