Learn More
Experimental study of the role of disorder in protein function is challenging. It has been proposed that proteins utilize disordered regions in the adaptive recognition of their various binding partners. However apart from a few exceptions, defining the importance of disorder in promiscuous binding interactions has proven to be difficult. In this paper, we(More)
Plasmodium falciparum is the most devastating agent of human malaria. A major contributor to its virulence is a complex lifecycle with multiple parasite forms, each presenting a different repertoire of surface antigens. Importantly, members of the 6-Cys s48/45 family of proteins are found on the surface of P. falciparum in every stage, and several of these(More)
Mycobacterium tuberculosis (Mtb) uses the ESX-1 type VII secretion system to export virulence proteins across its lipid-rich cell wall, which helps permeabilize the host's macrophage phagosomal membrane, facilitating the escape and cell-to-cell spread of Mtb. ESX-1 membranolytic activity depends on a set of specialized secreted Esp proteins, the structure(More)
UNLABELLED Crosslinking mass spectrometric applications for the study of proteins and protein complexes benefit from using (15)N metabolically labeled proteins. Peptides, derived from crosslinked (14)N and (15)N proteins (used in a 1:1molar ratio), exhibit specific mass spectrometric signatures of doublets of peaks, reflecting the number of nitrogen atoms(More)
Cross-linking combined with mass spectrometry is a powerful technique to study protein structure. Here, we present an optimized protocol for the preparation, processing, and analysis of a protein sample cross-linked with isotopically coded, affinity-enrichable, and CID-cleavable cross-linker CyanurBiotinDimercaptoPropionylSuccinimide using LC/ESI-MS/MS on a(More)
UNLABELLED The resolution and the fidelity of a protein structural model, constructed using crosslinking data, is dependent on the crosslinking distance constraints. Most of the popular amine-reactive NHS-ester crosslinkers are limited in their capacity to provide short distance constraints because of the rarity of lysine residues occurring in close(More)
Cross-linking combined with mass spectrometry for the study of proteins and protein complexes is greatly facilitated by the use of isotopically coded cleavable cross-linking reagents. The isotopic coding of the cross-linker enables confident detection of the cross-link signals, while cleavage of the cross-linker provides masses of the individual peptides(More)
Stress-specific activation of the chaperone Hsp33 requires the unfolding of a central linker region. This activation mechanism suggests an intriguing functional relationship between the chaperone's own partial unfolding and its ability to bind other partially folded client proteins. However, identifying where Hsp33 binds its clients has remained a major gap(More)
Disulfide bonds are valuable constraints in protein structure modeling. The Cys-Cys disulfide bond undergoes specific fragmentation under CID and, therefore, can be considered as a CID-cleavable crosslink. We have recently reported on the benefits of using non-specific digestion with proteinase K for inter-peptide crosslink determination. Here, we describe(More)
UNLABELLED The conversion of the cellular prion protein (PrP(C)) into aggregated ß-oligomeric (PrP(ß)) and fibril (PrP(Sc)) forms is the central element in the development of prion diseases. Here we report the first use of isotopically-coded hydrogen peroxide surface modification combined with mass spectrometry (MS) for the differential characterization of(More)
  • 1