Karine Poirier

Learn More
Investigation of a critical region for an X-linked mental retardation (XLMR) locus led us to identify a novel Aristaless related homeobox gene (ARX ). Inherited and de novo ARX mutations, including missense mutations and in frame duplications/insertions leading to expansions of polyalanine tracts in ARX, were found in nine familial and one sporadic case of(More)
Dravet syndrome (DS) is a genetically determined epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene. Since 2003, we have performed molecular analyses in a large series of patients with DS, 27% of whom were negative for mutations or rearrangements in SCN1A. In order to identify new genes responsible for the disorder in the(More)
Following the recent discovery that the methyl-CpG binding protein 2 (MECP2) gene located on Xq28 is involved in Rett syndrome (RTT), a wild spectrum of phenotypes, including mental handicap, has been shown to be associated with mutations in MECP2. These findings, with the compelling genetic evidence suggesting the presence in Xq28 of additional genes(More)
Polymicrogyria is a relatively common but poorly understood defect of cortical development characterized by numerous small gyri and a thick disorganized cortical plate lacking normal lamination. Here we report de novo mutations in a beta-tubulin gene, TUBB2B, in four individuals and a 27-gestational-week fetus with bilateral asymmetrical polymicrogyria.(More)
The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the(More)
OBJECTIVE We have recently shown that de novo mutations in the TUBA1A gene are responsible for a wide spectrum of neuronal migration disorders. To better define the range of these abnormalities, we searched for additional mutations in a cohort of 100 patients with lissencephaly spectrum for whom no mutation was identified in DCX, LIS1 and ARX genes and(More)
We have recently reported a missense mutation in exon 4 of the tubulin alpha 1A (Tuba1a) gene in a hyperactive N-ethyl-N-nitrosourea (ENU) induced mouse mutant with abnormal lamination of the hippocampus. Neuroanatomical similarities between the Tuba1a mutant mouse and mice deficient for Doublecortin (Dcx) and Lis1 genes, and the well-established functional(More)
Mutations in the TUBB3 gene, encoding β-tubulin isotype III, were recently shown to be associated with various neurological syndromes which all have in common the ocular motility disorder, congenital fibrosis of the extraocular muscle type 3 (CFEOM3). Surprisingly and in contrast to previously described TUBA1A and TUBB2B phenotypes, no evidence of(More)
The genetic causes of malformations of cortical development (MCD) remain largely unknown. Here we report the discovery of multiple pathogenic missense mutations in TUBG1, DYNC1H1 and KIF2A, as well as a single germline mosaic mutation in KIF5C, in subjects with MCD. We found a frequent recurrence of mutations in DYNC1H1, implying that this gene is a major(More)
Complex cortical malformations associated with mutations in tubulin genes: TUBA1A, TUBA8, TUBB2B, TUBB3, TUBB5 and TUBG1 commonly referred to as tubulinopathies, are a heterogeneous group of conditions with a wide spectrum of clinical severity. Among the 106 patients selected as having complex cortical malformations, 45 were found to carry mutations in(More)