Learn More
During development, Reelin acts on migrating neuronal precursors and controls correct cell positioning in the cortex and other brain structures by a hitherto unidentified mechanism. Here we show that in the postnatal mouse brain, Reelin acts as a detachment signal for chain-migrating interneuron precursors in the olfactory bulb. Neuronal precursors cultured(More)
The cytoarchitecture of the hindbrain results from precise and co-ordinated sequences of neuronal migrations. Here, we show that reelin, an extracellular matrix protein involved in neuronal migration during CNS development, is necessary for an early, specific step in the migration of several hindbrain nuclei. We identified two cell populations not(More)
BACKGROUND The cleavage-stage mouse embryo is composed of superficially equivalent blastomeres that will generate both the embryonic inner cell mass (ICM) and the supportive trophectoderm (TE). However, it remains unsettled whether the contribution of each blastomere to these two lineages can be accounted for by chance. Addressing the question of blastomere(More)
During embryogenesis, the neural stem cells (NSC) of the developing cerebral cortex are located in the ventricular zone (VZ) lining the cerebral ventricles. They exhibit apical and basal processes that contact the ventricular surface and the pial basement membrane, respectively. This unique architecture is important for VZ physical integrity and fate(More)
The adult subventricular zone (SVZ) supports neural stem cell self-renewal and differentiation and continually gives rise to new neurons throughout adult life. The mechanisms orienting the migration of neuroblasts from the SVZ to the olfactory bulb (OB) via the rostral migratory stream (RMS) have been extensively studied, but factors controlling neuroblast(More)
We present a method to label and trace the lineage of multiple neural progenitors simultaneously in vertebrate animals via multiaddressable genome-integrative color (MAGIC) markers. We achieve permanent expression of combinatorial labels from new Brainbow transgenes introduced in embryonic neural progenitors with electroporation of transposon vectors. In(More)
We achieve simultaneous two-photon excitation of three chromophores with distinct absorption spectra using synchronized pulses from a femtosecond laser and an optical parametric oscillator. The two beams generate separate multiphoton processes, and their spatiotemporal overlap provides an additional two-photon excitation route, with submicrometer overlay of(More)
Sonic hedgehog signaling is required for the maintenance of stem cell niches in the postnatal subventricular zone and the proliferation of neural progenitors in the mature hippocampus. We show here that delivery of Sonic hedgehog protein into the lateral ventricle of adult mice increases cell proliferation in the corpus callosum and cerebral cortex. In this(More)
Hedgehog interacting protein (Hip) and Patched 1 (Ptc1) regulate the cell responses to the morphogen Sonic Hedgehog (Shh). Here, we compare the relative expression patterns of Shh, Hip and Ptc1 transcripts in the E13.5 mouse brain embryo. We observe that the expression of Hip and Ptc1 often overlaps and is found close to Shh-expressing cells, suggesting(More)
General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every(More)
  • 1