Learn More
Globally, human immunodeficiency virus-type 1 (HIV-1) is extraordinarily variable, and this diversity poses a major obstacle to AIDS vaccine development. Currently, candidate vaccines are derived from isolates, with the hope that they will be sufficiently cross-reactive to protect against circulating viruses. This may be overly optimistic, however, given(More)
Escape from T cell-mediated immune responses affects the ongoing evolution of rapidly evolving viruses such as HIV. By applying statistical approaches that account for phylogenetic relationships among viral sequences, we show that viral lineage effects rather than immune escape often explain apparent human leukocyte antigen (HLA)-mediated immune-escape(More)
Human immunodeficiency virus (HIV)-1 amino acid sequence polymorphisms associated with expression of specific human histocompatibility leukocyte antigen (HLA) class I alleles suggest sites of cytotoxic T lymphocyte (CTL)-mediated selection pressure and immune escape. The associations most frequently observed are between expression of an HLA class I molecule(More)
The human cytotoxic T-lymphocyte (CTL) response to human immunodeficiency virus type 1 (HIV-1) has been intensely studied, and hundreds of CTL epitopes have been experimentally defined, published, and compiled in the HIV Molecular Immunology Database. Maps of CTL epitopes on HIV-1 protein sequences reveal that defined epitopes tend to cluster. Here we(More)
In a study of 114 epidemiologically linked Zambian transmission pairs, we evaluated the impact of human leukocyte antigen class I (HLA-I)-associated amino acid polymorphisms, presumed to reflect cytotoxic T lymphocyte (CTL) escape in Gag and Nef of the virus transmitted from the chronically infected donor, on the plasma viral load (VL) in matched recipients(More)
Evolutionary modelling studies indicate less than a century has passed since the most recent common ancestor of the HIV-1 pandemic strains and, in that time frame, an extraordinarily diverse viral population has developed. HIV-1 employs a multitude of schemes to generate variants: accumulation of base substitutions, insertions and deletions, addition and(More)
MOTIVATION The hepatitis C virus (HCV) is a significant threat to public health worldwide. The virus is highly variable and evolves rapidly, making it an elusive target for the immune system and for vaccine and drug design. At present, some 30 000 HCV sequences have been published. A central website that provides annotated sequences and analysis tools will(More)
With the burgeoning immunological data in the scientific literature, scientists must increasingly rely on Internet resources to inform and enhance their work. Here we provide a brief overview of the adaptive immune response and summaries of immunoinformatics resources, emphasizing those with Web interfaces. These resources include searchable databases of(More)
The hepatitis C virus (HCV) is a significant public health threat worldwide. The virus is highly variable and evolves rapidly, making it an elusive target for the immune system and for vaccine and drug design. Presently, approximately 50 000 HCV sequences have been published. A central website that provides annotated sequences and analysis tools will be(More)
We report the rational design and in vivo testing of mosaic proteins for a polyvalent pan-filoviral vaccine using a computational strategy designed for the Human Immunodeficiency Virus type 1 (HIV-1) but also appropriate for Hepatitis C virus (HCV) and potentially other diverse viruses. Mosaics are sets of artificial recombinant proteins that are based on(More)