Learn More
Short term threshold instabilities may cause erratic behavior in analog circuits like comparators and analog-to-digital-converters. As conventional characterization procedures have not been appropriately sensitized to such issues, this kind of erratic behavior usually only occurs in products where it is very difficult to identify. Therefore, for example(More)
Due to their broad differentiation potential and their persistence into adulthood, human neural crest-derived stem cells (NCSCs) harbour great potential for autologous cellular therapies, which include the treatment of neurodegenerative diseases and replacement of complex tissues containing various cell types, as in the case of musculoskeletal injuries. The(More)
In most mammals purine degradation ultimately leads to the formation of allantoin. Humans lack the enzyme uricase, which catalyzes the conversion of uric acid to allantoin. The resulting higher level of uric acid has been hypothesized to play a role as an antioxidant. Hyperuricaemia is usually an asymptomatic condition which is hypothesized to play a role(More)
— An accurate understanding of oxide traps is essential for a number of reliability issues, including the bias temperature instability, hot carrier degradation, time-dependent dielectric breakdown, random telegraph and 1/f noise. Recent results have demonstrated that hole capture and emission into oxide traps in pMOS transistors are more complicated than(More)
This article reviews recent developments on magnetoresistive detection of magnetic beads or nanoparticles by nanoscale sized sensors. Sensors are analyzed from an experimental and a numerical point of view in respect to their capability to either localize the position of a single magnetic particle or to detect the number of particles in a certain range.(More)
Given the rapid recovery of the degradation induced by bias-temperature stress, the understanding and modeling of NBTI has been a challenge for nearly half a century. With the introduction of the time-dependent defect spectroscopy (TDDS), NBTI could be studied at the single defect level, confirming that it is dominated by a collection of first-order(More)
In order to identify the physical mechanisms behind the negative bias temperature instability (NBTI), the time-dependent defect spectroscopy (TDDS) has been recently proposed. The TDDS takes advantage of the fact that in nano-scaled devices only a handful of defects are present. As a consequence, degradation and recovery proceed in discrete steps, each of(More)
Keywords: Hot-carrier Degradation (HCD) Negative bias temperature instability (NBTI) Recovery Capture emission time maps Stress voltage matrix Drift minimum a b s t r a c t We present measurement results in form of threshold voltage drift plots, recovery traces and continuous capture emission time maps (CET maps) including Negative Bias Temperature(More)
The physical origin of both Negative-and Positive Bias Temperature Instability (N-/PBTI) is still unclear and under debate. We analyzed the rarely studied recovery behavior after PBTI stress in pMOSFETs and compared it with NBTI data obtained from the same technology. While recovery after short stress times is consistent with the previously reported(More)