Karina E Avila

Learn More
When applying mechanical stress to a bulk metallic glass it responds with elastic and/or plastic deformations. A comprehensive microscopic theory for the plasticity of amorphous solids remains an open task. Shear transformation zones consisting of dozens of atoms have been identified as smallest units of deformation. The connexion between local formation of(More)
Large-scale simulations of two-dimensional bidisperse granular fluids allow us to determine spatial correlations of slow particles via the four-point structure factor S(4)(q,t). Both cases, elastic (ϵ=1) and inelastic (ϵ<1) collisions, are studied. As the fluid approaches structural arrest, i.e., for packing fractions in the range 0.6≤ϕ≤0.805, scaling is(More)
We test a hypothesis for the origin of dynamical heterogeneity in slowly relaxing systems, namely that it emerges from soft (Goldstone) modes associated with a broken continuous symmetry under time reparametrizations. We do this by constructing coarse grained observables and decomposing the fluctuations of these observables into transverse components, which(More)
A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, Nc, and their radius of gyration, RG. We show that , providing direct(More)
Dynamical heterogeneities--strong fluctuations near the glass transition--are believed to be crucial to explain much of the glass transition phenomenology. One hypothesis for their origin is that they emerge from soft (Goldstone) modes associated with a broken continuous symmetry under time reparametrizations. To test this hypothesis, we use numerical(More)
  • 1