Karina A. Hernandez

Learn More
INTRODUCTION Autologous techniques for the reconstruction of pediatric microtia often result in suboptimal aesthetic outcomes and morbidity at the costal cartilage donor site. We therefore sought to combine digital photogrammetry with CAD/CAM techniques to develop collagen type I hydrogel scaffolds and their respective molds that would precisely mimic the(More)
A central tenet of reconstructive surgery is the principle of “replacing like with like.” However, due to limitations in the availability of autologous tissue or because of the complications that may ensue from harvesting it, autologous reconstruction may be impractical to perform or too costly in terms of patient donor-site morbidity. The field of tissue(More)
Tissue engineering endeavors to create replacement tissues and restore function that may be lost through infection, trauma, and cancer. However, wide clinical application of engineered scaffolds has yet to come to fruition due to inadequate vascularization. Here, we fabricate hydrogel constructs using Pluronic(®) F127 as a sacrificial microfiber, creating(More)
The following investigation was undertaken in connection with Sechenov's idea on mutual influence of muscles performing different work. It deals with the influence on test muscle (TM) efficiency of other simultaneously working muscles (SWM). It was shown that tension of SWM or maintenance of complex postures exert a negative influence on the force and(More)
BACKGROUND A crucial step in the progression of cancer involves the transendothelial migration of tumor cells into the bloodstream and invasion at distant sites. Most in vitro models of malignant cell behavior do not account for the presence of and interaction with vascular cells. Three-dimensional platforms to further explore the factors responsible for(More)
Sutures elicit an inflammatory response, which may impede the healing process and result in wound complications. We recently reported a novel family of biocompatible, biodegradable polymers, amino acid-based poly(ester amide)s (AA-PEA), which we have shown to significantly attenuate the foreign body inflammatory response in vitro. Two types of AA-PEA(More)
Current techniques for autologous auricular reconstruction produce substandard ear morphologies with high levels of donor-site morbidity, whereas alloplastic implants demonstrate poor biocompatibility. Tissue engineering, in combination with noninvasive digital photogrammetry and computer-assisted design/computer-aided manufacturing technology, offers an(More)
  • 1