Karin Schnetz

Learn More
The recently discovered prokaryotic CRISPR/Cas defence system provides immunity against viral infections and plasmid conjugation. It has been demonstrated that in Escherichia coli transcription of the Cascade genes (casABCDE) and to some extent the CRISPR array is repressed by heat-stable nucleoid-structuring (H-NS) protein, a global transcriptional(More)
The bgl operon of Escherichia coli encodes all functions necessary for the regulated uptake and utilization of aryl beta-glucosides. The operon is unusual, however, in that it is cryptic in wild-type strains, requiring activation by mutational events. The vast majority of these mutations are due to transposition of insertion elements into the promoter(More)
Wild-type Escherichia coli cells are unable to grow on beta-glucosides. Spontaneous mutants arise, however, which are able to utilize certain aromatic beta-glucosides such as salicin or arbutin as carbon sources, revealing the presence of a cryptic operon called bgl. Mutations activating the operon map within (or close to) the promoter region of the operon(More)
Specificity of repression by the histone-like nucleoid structuring protein and pleiotropic regulator, H-NS, is exceptionally high in case of the Escherichia coli bgl (beta-glucoside) operon. Here we present evidence that H-NS represses the operon at two levels. The binding of H-NS to an upstream silencer results in an approximately threefold repression of(More)
beta-Glucoside Enzyme II (IIBgl) of the Escherichia coli phosphotransferase system transports and phosphorylates beta-glucosides, whereas the glucose Enzyme II-III pair (IIGlc-IIIGlc) transports and phosphorylates glucose as well as certain aliphatic alpha- and beta-glucosides. Comparisons of their respective amino acid sequences previously revealed that(More)
The beta-glucoside (bgl) operon of Escherichia coli is subject to both positive control by transcriptional termination/antitermination and negative control by the beta-glucoside-specific transport protein, an integral membrane protein known as enzyme IIBgl. Previous results led us to speculate that enzyme IIBgl exerts its negative control by phosphorylating(More)
The cryptic bgl operon of Escherichia coli is activated by the spontaneous insertion of mobile DNA elements. Screening of a collection of such mutations revealed insertion of the 1195-base-pair element IS5 into various positions both upstream and downstream of the bgl promoter P0. Activation of the operon was in all cases attributable to enhancement of P0(More)
Silencing of a transcriptional unit by flanking sequence elements has so far only been described for eukaryotic systems. Here, a similar system is described in bacteria. The Escherichia coli bgl operon (beta-glucoside utilization) is normally cryptic due to very low promoter activity. However, low activity is not attributable to the quality of the promoter(More)
Genes are regulated because their expression involves a fitness cost to the organism. The production of proteins by transcription and translation is a well-known cost factor, but the enzymatic activity of the proteins produced can also reduce fitness, depending on the internal state and the environment of the cell. Here, we map the fitness costs of a key(More)
Escherichia coli strains, in general, do not ferment cellobiose and aryl-beta-D-glucosidic sugars, although "cryptic" beta-d-glucoside systems have been characterized. Here we describe an additional cryptic operon (bgc) for the utilization of cellobiose and the aryl-beta-d-glucosides arbutin and salicin at low temperature. The bgc operon was identified by(More)