Learn More
For the past decade, the detection and quantification of interactions within and between physiological networks has become a priority-in-common between the fields of biomedicine and computer science. Prominent examples are the interaction analysis of brain networks and of the cardiovascular-respiratory system. The aim of the study is to show how and to what(More)
Quantification of functional connectivity in physiological networks is frequently performed by means of time-variant partial directed coherence (tvPDC), based on time-variant multivariate autoregressive models. The principle advantage of tvPDC lies in the combination of directionality, time variance and frequency selectivity simultaneously, offering a more(More)
OBJECTIVE Epileptic seizure activity influences the autonomic nervous system (ANS) in different ways. Heart rate variability (HRV) is used as indicator for alterations of the ANS. It was shown that linear, nondirected interactions between HRV and EEG activity before, during, and after epileptic seizure occur. Accordingly, investigations of directed(More)
A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light(More)
OBJECTIVE Principle aim of this study is to investigate the performance of a matching pursuit (MP)-based bispectral analysis in the detection and quantification of quadratic phase couplings (QPC) in biomedical signals. Nonlinear approaches such as time-variant bispectral analysis are able to provide information about phase relations between oscillatory(More)
In neuroscience, data are typically generated from neural network activity. Complex interactions between measured time series are involved, and nothing or only little is known about the underlying dynamic system. Convergent Cross Mapping (CCM) provides the possibility to investigate nonlinear causal interactions between time series by using nonlinear state(More)
INTRODUCTION This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Neural Signals and Images". OBJECTIVES The aim of this study was to compare rhythmicities in the quadratic phase coupling (QPC) in the tracé discontinue EEG patterns (TD) of premature newborns and the tracé(More)
Major aim of our study is to demonstrate that signal-adaptive approaches improve the nonlinear and time-variant analysis of heart rate variability (HRV) of children with temporal lobe epilepsy (TLE). Nonlinear HRV analyses are frequently applied in epileptic patients. As HRV is characterized by components with oscillatory properties frequency-selective(More)
Abstract An innovative concept for synchronization analysis between heart rate (HR) components and rhythms in EEG envelopes is represented; it applies time-variant analyses to heart rate variability (HRV) and EEG, and it was tested in children with temporal lobe epilepsy (TLE). After a removal of ocular and movement-related artifacts, EEG band activity was(More)