Learn More
Prokaryotic biofilms that predominate in a diverse range of ecosystems are often composed of highly structured multispecies communities. Within these communities metabolic activities are integrated, and developmental sequences, not unlike those of multicellular organisms, can be detected. These structural adaptations and interrelationships are made possible(More)
Complementary approaches were employed to characterize transitional episodes in Pseudomonas aeruginosa biofilm development using direct observation and whole-cell protein analysis. Microscopy and in situ reporter gene analysis were used to directly observe changes in biofilm physiology and to act as signposts to standardize protein collection for(More)
The Pneumococcal serine-rich repeat protein (PsrP) is a pathogenicity island encoded adhesin that has been positively correlated with the ability of Streptococcus pneumoniae to cause invasive disease. Previous studies have shown that PsrP mediates bacterial attachment to Keratin 10 (K10) on the surface of lung cells through amino acids 273-341 located in(More)
The important human pathogen Pseudomonas aeruginosa has been linked to numerous biofilm-related chronic infections. Here, we demonstrate that biofilm formation following the transition to the surface attached lifestyle is regulated by three previously undescribed two-component systems: BfiSR (PA4196-4197) harboring an RpoD-like domain, an OmpR-like BfmSR(More)
UNLABELLED Atherosclerosis, a disease condition resulting from the buildup of fatty plaque deposits within arterial walls, is the major underlying cause of ischemia (restriction of the blood), leading to obstruction of peripheral arteries, congestive heart failure, heart attack, and stroke in humans. Emerging research indicates that factors including(More)
BioScape is a concurrent language motivated by the biological landscapes found at the interface of biology and biomaterials [5]. It has been motivated by the need to model antibacterial surfaces, biofilm formation, and the effect of DNAse in treating and preventing biofilm infections. As its predecessor, SPiM [12], BioScape has a sequential semantics based(More)
The human pathogen Pseudomonas aeruginosa is capable of causing both acute and chronic infections. Differences in virulence are attributable to the mode of growth: bacteria growing planktonically cause acute infections, while bacteria growing in matrix-enclosed aggregates known as biofilms are associated with chronic, persistent infections. While the(More)
Biofilms are complex communities of microorganisms in organized structures attached to surfaces. Importantly, biofilms are a major cause of bacterial infections in humans, and remain one of the most significant challenges to modern medical practice. Unfortunately, conventional therapies have shown to be inadequate in the treatment of most chronic biofilm(More)