Learn More
Recent reports have demonstrated the in vivo association of Raf-1 with members of the 14-3-3 protein family. To address the significance of the Raf-1-14-3-3 interaction, we investigated the enzymatic activity and biological function of Raf-1 in the presence and absence of associated 14-3-3. The interaction between these two molecules was disrupted in vivo(More)
Genetic and biochemical studies have identified kinase suppressor of Ras (KSR) to be a conserved component of Ras-dependent signaling pathways. To better understand the role of KSR in signal transduction, we have initiated studies investigating the effect of phosphorylation and protein interactions on KSR function. Here, we report the identification of five(More)
The peptidase system in Drosophila melanogaster, consisting of dipeptidase-A, dipeptidase-B, dipeptidase-C and the leucine aminopeptidases, was used as a model to study the adaptive significance of enzyme activity variation. The involvement of the peptidases in osmoregulation has been suggested from the ubiquitous distribution of peptidase activities in(More)
Dip-A, Dip-B, and Dip-C constitute structural genes for three peptidic enzymes in Drosophila melanogaster distinct from the leucine aminopeptidases. Their ontogenetic and tissue distributions of activities suggest the involvement of these enzymes in a general metabolic role, such as the regulation of amino acid and oligopeptide pools to make amino acids(More)
The peptidase system in Drosophila melanogaster (dipeptidase-A, -B, and -C and leucine aminopeptidases G and P) was used as a model to study the effects of modifier genes on activity of enzymes with similar functions. A screen of X, second, and third chromosome substitution isogenic lines revealed the presence of activity modifiers for peptidases on all(More)
  • 1