Karin Mannerstedt

  • Citations Per Year
Learn More
Type-1 fimbriae are important virulence factors for the establishment of Escherichia coli urinary tract infections. Bacterial adhesion to the high-mannosylated uroplakin Ia glycoprotein receptors of bladder epithelium is mediated by the FimH adhesin. Previous studies have attributed differences in mannose-sensitive adhesion phenotypes between faecal and(More)
Inverting cellobiose phosphorylase (CtCBP) and cellodextrin phosphorylase (CtCDP) from Clostridium thermocellum ATCC27405 of glycoside hydrolase family 94 catalysed reverse phosphorolysis to produce cellobiose and cellodextrins in 57% and 48% yield from α-d-glucose 1-phosphate as donor with glucose and cellobiose as acceptor, respectively. Use of(More)
Fluorescently tagged glycosides containing terminal α(1→3) and α(1→4)-linked thiogalactopyranosides have been prepared and tested for resistance to hydrolysis by α-galactosidases. Eight fluorescent glycosides containing either galactose or 5-thiogalactose as the terminal sugar were enzymatically synthesized using galactosyltransferases, with lactosyl(More)
The use of Kdo thioglycosides as glycosyl donors using DMTST, IBr/AgOTf and NIS/AgOTf as promoters has been evaluated. Activation at low temperature allowed to escape the formation of 2,3-glycal byproducts to give glycosides in high yield and with good beta-anomeric selectivity. The use of diethyl ether as solvent and (especially) isopropylidene acetals as(More)
Placing an 2-nitrobenzyl group on O-6 of the galactosyl residue in uridine-5'-diphosphogalactose (UDP-Gal) gives 6''-O-2-nitrobenzyl-UDP-Gal that is shown to be inactive as a donor substrate for beta-(1-->4)-galactosyltransferase (GalT). On irradiation at 365 nm, the nitrobenzyl group is completely removed yielding native UDP-Gal that then transfers(More)
Novel principles for optimizing the properties of peptide-based drugs are needed in order to leverage their full pharmacological potential. We present the design, synthesis, and evaluation of a library of neoglycolipidated glucagon-like peptide 1 (GLP-1) analogues, which are valuable drug candidates for treatment of type 2 diabetes and obesity.(More)
A conserved tetrasaccharide structure, L-glycero-alpha-D-manno-heptopyranosyl-(1-->2)-(6-O-aminoethylphosphono-L-glycero-alpha-D-manno-heptopyranosyl)-(1-->3)-[beta-D-glucopyranosyl-(1-->4)]-L-glycero-alpha-D-manno-heptopyranose, from the LPS inner core of Haemophilus influenzae has been synthesised as its ethylamino glycosides to allow later conjugations.(More)
Glycosyltransferases (GTs) catalyse the sequential addition of monosaccharides to specific acceptor molecules and play major roles in key biological processes. GTs are classified into two main families depending on the inverted or retained stereochemistry of the glycosidic bond formed during the reaction. While the mechanism of inverting enzymes is well(More)
Threonine biosynthesis is a general feature of prokaryotes, eukaryotic microorganisms, and higher plants. Since mammals lack the appropriate synthetic machinery, instead obtaining the amino acid through their diet, the pathway is a potential focus for the development of novel antibiotics, antifungal agents, and herbicides. Threonine synthase (TS), a(More)
  • 1