Karin M. Nijkamp

Learn More
A Pseudomonas putida S12 strain was constructed that efficiently produced the fine chemical cinnamic acid from glucose or glycerol via the central metabolite phenylalanine. The gene encoding phenylalanine ammonia lyase from the yeast Rhodosporidium toruloides was introduced. Phenylalanine availability was the main bottleneck in cinnamic acid production,(More)
A Pseudomonas putida S12 strain was constructed that is able to convert glucose to p-coumarate via the central metabolite l-tyrosine. Efficient production was hampered by product degradation, limited cellular l-tyrosine availability, and formation of the by-product cinnamate via l-phenylalanine. The production host was optimized by inactivation of fcs, the(More)
We describe the use of plasmid rescue to facilitate studies on the behaviour of Ds and Ac elements in transgenic tomato plants. The rescue of Ds elements relies on the presence of a plasmid origin of replication and a marker gene selective in Escherichia coli within the element. The position within the gehome of modified Ds elements, rescued both before and(More)
  • 1