Karin Lüdtke

Learn More
The two-dimensional (2D) center-of-mass diffusion, D, of end-tethered poly(2-methyl-2-oxazoline) (PMOx) lipopolymer chains was studied in a Langmuir monolayer at the air-water interface using wide-field single molecule fluorescence microscopy. In this case, tethering and stabilization of hydrophilic PMOx chains at the air-water interface is accomplished via(More)
The degree of domain registration in a liquid-ordered/liquid-disordered phase-separating lipid mixture consisting of 1-stearoyl-2-oleoyl-sn-3-phosphocholine, egg sphingomyelin, and cholesterol (molar mixing ratio of 1:1:1) was studied using three different planar lipid bilayer architectures distinguished by their bilayer-substrate distance d using(More)
We present the synthesis of novel 2-oxazoline monomers with different 2-substituents and their consecutive conversion into lipopolymers by living cationic polymerization. The side functions of these monomers were varied to realize different steric needs and hydrogen bonding interactions of the polymer side chains. 2-(2'-N-pyrrolidonyl-ethyl)-2-oxazoline,(More)
The micelle formation of five poly(2-oxazoline) diblock, triblock and gradient copolymers in water was investigated using fluorescence correlation spectroscopy. The polymers were synthesized by consecutive or simultaneous living cationic polymerization of 2-methyl2-oxazoline for the hydrophilic and 2-nonyl-2oxazoline for the hydrophobic polymer segments.(More)
We report a simple method to confine transmembrane cell receptors in stripe micropatterns of a lipid/lipopolymer monolayer, which are formed as result of the transfer onto a solid substrate. The stripes are aligned perpendicular to the meniscus, whose periodicity can systematically be tuned by the transfer velocity. This strongly suggests the dominant role(More)
  • 1