Learn More
Directional transport of the phytohormone auxin is required for the establishment and maintenance of plant polarity, but the underlying molecular mechanisms have not been fully elucidated. Plant homologs of human multiple drug resistance/P-glycoproteins (MDR/PGPs) have been implicated in auxin transport, as defects in MDR1 (AtPGP19) and AtPGP1 result in(More)
Several ATP-binding cassette (ABC) transporters can confer multidrug resistance to cancer cells by functioning as energy-dependent efflux pumps. The half-transporter ABCG2 and the widely studied P-glycoprotein (P-gp) are two ABC transporters that, when overexpressed, are capable of extruding a variety of structurally unrelated chemotherapy agents from(More)
The use of probe substrates and combinations of ATP-binding cassette (ABC) transporter knockout (KO) animals may facilitate the identification of common substrates between apparently unrelated ABC transporters. An unexpectedly low concentration of the purine nucleotide analogue, 9-(2-(phosphonomethoxy)ethyl)-adenine (PMEA), and up-regulation of Abcg2 in(More)
BACKGROUND Many neglected tropical infectious diseases affecting humans are transmitted by arthropods such as mosquitoes and ticks. New mode-of-action chemistries are urgently sought to enhance vector management practices in countries where arthropod-borne diseases are endemic, especially where vector populations have acquired widespread resistance to(More)
G protein-coupled receptor (GPCR) signaling is mediated by protein-protein interactions at multiple levels. The characterization of the corresponding protein complexes is therefore paramount to the basic understanding of GPCR-mediated signal transduction. The number of documented interactions involving GPCRs is rapidly growing, and appreciating the(More)
A variety of human cancers become resistant or are intrinsically resistant to treatment with conventional chemotherapy, a phenomenon called multidrug resistance. This broad-based resistance results in large part, but not solely, from overexpression of members of the ATP-binding cassette (ABC) superfamily of membrane transporters, including P-glycoprotein,(More)
Several members of the ATP-binding cassette (ABC) transporter superfamily, including P-glycoprotein and the half-transporter ABCG2, can confer multidrug resistance to cancer cells in culture by functioning as ATP-dependent efflux pumps. ABCG2 variants harboring a mutation at arginine 482 have been cloned from several drug-resistant cell lines, and these(More)
Mast cells are among the first cells of our immune system to encounter exogenous danger. Intracellular receptors such as nucleotide-binding oligomerization domain (Nod) play an important role in responding to invading pathogens. Here, we have investigated the response of human mast cells to the Nod1 ligand M-TriDAP. Human cord blood-derived mast cells(More)
Advancements in tick neurobiology may impact the development of acaricides to control those species that transmit human and animal diseases. Here, we report the first cloning and pharmacological characterization of two neurotransmitter binding G protein-coupled receptors in the Lyme disease (blacklegged) tick, Ixodes scapularis. The genes IscaGPRdop1 and(More)
BACKGROUND New mode-of-action insecticides are sought to provide continued control of pesticide resistant arthropod vectors of neglected tropical diseases (NTDs). We previously identified antagonists of the AaDOP2 D1-like dopamine receptor (DAR) from the yellow fever mosquito, Aedes aegypti, with toxicity to Ae. aegypti larvae as leads for novel(More)