Learn More
Previous work from our laboratory (Athenstaedt, K., Zweytick, D., Jandrositz, A., Kohlwein, S. D., and Daum, G. (1999) J. Bacteriol. 181, 6441-6448) showed that the gene product of YMR313c (named Tgl3p) is a component of yeast lipid particles, and deletion of this gene led to an increase in the cellular level of triacylglycerols (TAG). These observations(More)
Nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) was employed to determine qualitative differences in the lipid molecular species composition of a comprehensive set of organellar membranes, isolated from a single culture of Saccharomyces cerevisiae cells. Remarkable differences in the acyl chain composition of biosynthetically related(More)
Lipid particles of the yeast Saccharomyces cerevisiae were isolated at high purity, and their proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Major lipid particle proteins were identified by mass spectrometric analysis, and the corresponding open reading frames (ORFs) were deduced. In silicio analysis revealed that all(More)
Triacylglycerol (TAG) lipases are required for mobilization of TAG stored in lipid particles. Recently, Tgl3p was identified as a major TAG lipase of the yeast Saccharomyces cerevisiae (Athenstaedt, K., and Daum, G. (2003) J. Biol. Chem. 278, 23317-23323). Here, we report the identification of Tgl4p and Tgl5p as additional TAG lipases of the yeast. Both(More)
Triacylglycerols (TAGs), steryl esters (SEs) and wax esters (WEs) form the group of neutral lipids. Whereas TAGs are present in all types of cell, the occurrence of SEs in prokaryotes is questionable, and the presence of WEs as storage molecules is restricted to plants and a few bacteria. Here, we summarize recent knowledge on the formation, storage and(More)
Phosphatidic acid (PtdOH) is a key intermediate in glycerolipid biosynthesis. Two different pathways are known for de novo formation of this compound, namely (a) the Gro3P (glycerol 3-phosphate) pathway, and (b) the GrnP (dihydroxyacetone phosphate) pathway. Whereas the former route of PtdOH synthesis is present in bacteria and all types of eukaryotes, the(More)
Lipid particles (LP) of all types of cells are a depot of neutral lipids. The present investigation deals with the isolation of LP from the yeast Yarrowia lipolytica and the characterization of their lipid and protein composition. Properties of LP varied depending on the carbon source. LP from glucose-grown cells revealed a mean diameter of 650 nm with a(More)
The single cell eukaryote Saccharomyces cerevisiae is an attractive model to study the complex process of neutral lipid (triacylglycerol and steryl ester) synthesis, storage and turnover. In mammals, defects in the metabolism of these lipids are associated with a number of severe diseases such as atherosclerosis, obesity and type II diabetes. Since the(More)
The DPP1 gene, encoding diacylglycerol pyrophosphate (DGPP) phosphatase from Saccharomyces cerevisiae, has recently been identified as a zinc-regulated gene, and it contains a putative zinc-responsive element (UAS(ZRE)) in its promoter. In this work we examined the hypothesis that expression of DGPP phosphatase was regulated by zinc availability. The(More)
In the yeast Saccharomyces cerevisiae lipid particles harbor two acyltransferases, Gat1p and Slc1p, which catalyze subsequent steps of acylation required for the formation of phosphatidic acid. Both enzymes are also components of the endoplasmic reticulum, but this compartment contains additional acyltransferase(s) involved in the biosynthesis of(More)