Learn More
Interleukin-6 (IL-6) could be a possible mediator of insulin resistance. We investigated whether IL-6 could inhibit insulin signaling in human skeletal myotubes and whether suppressor of cytokine signaling 3 (SOCS-3) could be related to insulin resistance in vivo in humans. IL-6 inhibited insulin signaling and induced SOCS-3 expression in differentiated(More)
The paired box homeodomain Pax6 is crucial for endocrine cell development and function and plays an essential role in glucose homeostasis. Indeed, mutations of Pax6 are associated with diabetic phenotype. Importantly, homozygous mutant mice for Pax6 are characterized by markedly decreased β and δ cells and absent α cells. To better understand the critical(More)
Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha(More)
Most lifestyle-related chronic diseases are characterized by low-grade systemic inflammation and insulin resistance. Excessive tumor necrosis factor-alpha (TNF-alpha) concentrations have been implicated in the development of insulin resistance, but direct evidence in humans is lacking. Here, we demonstrate that TNF-alpha infusion in healthy humans induces(More)
To understand better the defects in the proximal steps of insulin signaling during type 2 diabetes, we used differentiated human skeletal muscle cells in primary culture. When compared with cells from control subjects, myotubes established from patients with type 2 diabetes presented the same defects as those previously evidenced in vivo in muscle biopsies,(More)
Obesity and type 2 diabetes present partially overlapping phenotypes with systemic inflammation as a common feature, raising the hypothesis that elevated cytokine levels may contribute to peripheral insulin resistance as well as the decreased beta cell functional mass observed in type 2 diabetes. In healthy humans, TNF-alpha infusion induces skeletal muscle(More)
We identified signaling pathways by which IL-6 regulates skeletal muscle differentiation and metabolism. Primary human skeletal muscle cells were exposed to IL-6 (25 ng/ml either acutely or for several days), and small interfering RNA gene silencing was applied to measure glucose and fat metabolism. Chronic IL-6 exposure increased myotube fusion and(More)
OBJECTIVE Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells. RESEARCH DESIGN AND METHODS Human skeletal muscle cells were cultured for up to 24 h with tumor necrosis(More)
The development of intestinal goblet cell hyperplasia/hypertrophy during nematode infection involves the Th2 cytokines IL-4 and IL-13 via STAT6 activation. This is thought to play an important role in host protective immunity against the infection. In this study we demonstrate that IL-4 and IL-13 up-regulate the specific goblet cell product trefoil factor-3(More)
Tumor necrosis factor-alpha (TNF-alpha) induces skeletal muscle insulin resistance by impairing insulin signaling events involved in GLUT4 translocation. We tested whether mitogenic-activated protein kinase kinase kinase kinase isoform 4 (MAP4K4) causes the TNF-alpha-induced negative regulation of extracellular signal-regulated kinase-1/2 (ERK-1/2), c-Jun(More)