Karen V. Ambrose

Learn More
A new Epichloë species distributed in Africa, Europe, North America and South America on host genera Bromus, Festuca, Lolium and Poa is described. Stromata, characteristic of the genus, frequently occurred on the reproductive tillers of Poa secunda subsp. juncifolia, but neither perithecia nor mature asci were observed. Conidiogenous cells and conidial(More)
Horizontal gene transfer is recognized as an important factor in genome evolution, particularly when the newly acquired gene confers a new capability to the recipient species. We identified a gene similar to the makes caterpillars floppy (mcf1 and mcf2) insect toxin genes in Photorhabdus, bacterial symbionts of nematodes, in the genomes of the Epichloë(More)
Epichloë spp. are symbiotic fungal endophytes of many cool season grasses. The presence of the fungal endophytes often confers insect, drought, and disease tolerance to the host grasses. The presence of the fungal endophytes within the host plants does not elicit host defense responses. The molecular basis for this phenomenon is not known. Epichloë(More)
Understanding genetic relationships among the three most important Agrostis species will be important in breeding and genomic studies aimed at cultivar improvement. Creeping, colonial, and velvet bentgrasses (Agrostis stolonifera L., A. capillaris L., and A. canina L., respectively) are commercially important turfgrass species often used on golf courses.(More)
One of the most important plant-fungal symbiotic relationships is that of cool season grasses with endophytic fungi of the genera Epichloë and Neotyphodium. These associations often confer benefits, such as resistance to herbivores and improved drought tolerance, to the hosts. One benefit that appears to be unique to fine fescue grasses is disease(More)
Epichloë spp. are naturally occurring fungal endophytic symbionts of many cool-season grasses. Infection by the fungal endophytes often confers biotic and abiotic stress tolerance to their hosts. Endophyte-mediated disease resistance is well-established in the fine fescue grass Festuca rubra subsp. rubra (strong creeping red fescue) infected with E.(More)
  • 1