Learn More
Environmental risk assessments of engineered nanoparticles require thorough characterization of nanoparticles and their aggregates. Furthermore, quantitative analytical methods are required to determine environmental concentrations and enable both effect and exposure assessments. Many methods still need optimization and development, especially for new types(More)
It is inevitable that, during their use, engineered nanoparticles will be released into soils and waters. There is therefore increasing concern over the potential impacts of engineered nanoparticles in the environment on aquatic and terrestrial organisms and on human health. Once released into the environment, engineered nanoparticles will aggregate to some(More)
Nanotechnology is developing rapidly and, in the future, it is expected that increasingly more products will contain some sort of nanomaterial. However, to date, little is known about the occurrence, fate and toxicity of nanoparticles. The limitations in our knowledge are partly due to the lack of methodology for the detection and characterisation of(More)
There is an increasing concern over the safety of engineered nanoparticles (ENPs) to humans and the environment and it is likely that the environmental risks of these particles will have to be tested under regulatory schemes such as REACH. Due to their unique properties and the fact that their detection and characterisation in complex matrices is(More)
There is increasing concern over the risks of nanoparticles to humans and the environment, but little is known about the properties of the nanoparticulate mineral filters, such as titanium dioxide and zinc oxide, in sunscreens. There is an urgent need to develop methods for characterizing nanoparticles in (NPs) such products to provide data for human and(More)
The potential impact of nanomaterials on the environment and on human health has already triggered legislation requiring labelling of products containing nanoparticles. However, so far, no validated analytical methods for the implementation of this legislation exist. This paper outlines a generic approach for the validation of methods for detection and(More)
Imaging and characterization of engineered nanoparticles (ENPs) in water, soils, sediment and food matrices is very important for research into the risks of ENPs to consumers and the environment. However, these analyses pose a significant challenge as most existing techniques require some form of sample manipulation prior to imaging and characterization,(More)
This study explored the potential for engineered nanoparticles (ENPs) to contaminate the UK drinking water supplies and established the significance of the drinking water exposure route compared to other routes of human exposure. A review of the occurrence and quantities of ENPs in different product types on the UK market as well as release scenarios, their(More)
Available measurement methods for nanomaterials are based on very different measurement principles and hence produce different values when used on aggregated nanoparticle dispersions. This paper provides a solution for relating measurements of nanomaterials comprised of nanoparticle aggregates determined by different techniques using a uniform expression of(More)