Learn More
It has been assumed, based largely on morphologic evidence, that human pluripotent stem cells (hPSCs) contain underdeveloped, bioenergetically inactive mitochondria. In contrast, differentiated cells harbour a branched mitochondrial network with oxidative phosphorylation as the main energy source. A role for mitochondria in hPSC bioenergetics and in cell(More)
Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently,(More)
Mice carrying mutations in the fatty liver dystrophy (fld) gene have features of human lipodystrophy, a genetically heterogeneous group of disorders characterized by loss of body fat, fatty liver, hypertriglyceridemia and insulin resistance. Through positional cloning, we have isolated the gene responsible and characterized two independent mutant alleles,(More)
We previously identified mutations in the Lpin1 gene, encoding lipin-1, as the underlying cause of lipodystrophy in the fatty liver dystrophy (fld) mutant mouse. Lipin-1 is normally expressed at high levels in adipose tissue and skeletal muscle, and deficiency in the fld mouse causes impaired adipose tissue development, insulin resistance, and altered(More)
We recently identified mutations in the Lpin1 (lipin) gene to be responsible for lipodystrophy in the fatty liver dystrophy (fld) mouse strain. Previous studies revealed that lipin plays a critical role in adipogenesis, explaining the adipose-deficient phenotype of the fld mouse. In the current study, we demonstrate that alternative mRNA splicing generates(More)
Mutations in the nuclear envelope proteins lamins A and C cause a broad variety of human diseases, including Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy, and Hutchinson-Gilford progeria syndrome. Cells lacking lamins A and C have reduced nuclear stiffness and increased nuclear fragility, leading to increased cell death under mechanical strain(More)
Lamins are key structural components of the nuclear lamina, an intermediate filament meshwork that lies beneath the inner nuclear membrane. Lamins play a role in nuclear architecture, DNA replication, and gene expression. Mutations affecting A-type lamins have been associated with a variety of human diseases, including muscular dystrophy, cardiomyopathy,(More)
Metabolic syndrome (MetSyn) is a group of metabolic conditions that occur together and promote the development of cardiovascular disease (CVD) and diabetes. Recent genome-wide association studies have identified several novel susceptibility genes for MetSyn traits, and studies in rodent models have provided important molecular insights. However, as yet,(More)
Mammalian lipins (lipin-1, lipin-2, and lipin-3) are Mg2+-dependent phosphatidate phosphatase (PAP) enzymes, which catalyze a key reaction in glycerolipid biosynthesis. Lipin-1 also functions as a transcriptional coactivator in conjunction with members of the peroxisome proliferator-activated receptor family. An S734L mutation in LPIN2 causes Majeed(More)
Neuronal migration is essential for the development of the mammalian brain. Here, we document severe defects in neuronal migration and reduced numbers of neurons in lamin B1-deficient mice. Lamin B1 deficiency resulted in striking abnormalities in the nuclear shape of cortical neurons; many neurons contained a solitary nuclear bleb and exhibited an(More)