Learn More
Diverse sensory organs, including mammalian taste buds and insect chemosensory sensilla, show a marked compartmentalization of receptor cells; however, the functional impact of this organization remains unclear. Here we show that compartmentalized Drosophila olfactory receptor neurons (ORNs) communicate with each other directly. The sustained response of(More)
Quinoxalinedione compounds such as 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) are the most commonly used alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. However, we find that in the presence of transmembrane AMPA receptor regulatory proteins (TARPs), which are AMPA receptor auxiliary subunits, CNQX acts as a partial(More)
Stargazer mice are characterized by ataxia and seizures, which resemble the human disorder absence epilepsy. Stargazin, the protein mutated in stargazer mice, promotes the expression and function of neuronal AMPA receptors (AMPARs). However, it is unclear how decreased expression of excitatory AMPARs generates stargazer seizures, given that seizures often(More)
Transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary subunits that influence diverse aspects of receptor function. However, the full complement of physiological roles for TARPs in vivo remains poorly understood. Here we find that double knock-out mice lacking TARPs gamma-2 and gamma-3 are profoundly ataxic and fail to thrive.(More)
Transmembrane AMPA receptor regulatory proteins (TARPs), including gamma-2, gamma-3, gamma-4, and gamma-8, are auxiliary subunits for AMPA receptors. Based on studies in single knockout mice, it has been suggested that nearly all native AMPA receptors are associated with TARPs. To study the interplay between TARP family members and AMPA receptors in vivo,(More)
Insects use taste to evaluate food, hosts, and mates. Drosophila has many "orphan" taste neurons that express no known taste receptors. The Ionotropic Receptor (IR) superfamily is best known for its role in olfaction, but virtually nothing is known about a clade of ∼35 members, the IR20a clade. Here, a comprehensive analysis of this clade reveals expression(More)
Many insect vectors of disease detect their hosts through olfactory cues, and thus it is of great interest to understand better how odors are encoded. However, little is known about the molecular underpinnings that support the unique function of coeloconic sensilla, an ancient and conserved class of sensilla that detect amines and acids, including(More)
Introduction Animals in their natural environments are immersed in odors. These odors are rich in information, and animals have evolved sophisticated olfactory systems to detect and interpret them. The ability to encode the identity and intensity of odors can allow an animal to locate food sources, thereby permitting survival , to identify mates, promoting(More)
  • 1