Karen M. O'Shea

Learn More
Mitofusin-2 (Mfn-2) is a dynamin-like protein that is involved in the rearrangement of the outer mitochondrial membrane. Research using various experimental systems has shown that Mfn-2 is a mediator of mitochondrial fusion, an evolutionarily conserved process responsible for the surveillance of mitochondrial homeostasis. Here, we find that cardiac myocyte(More)
AIMS Clinical studies suggest that intake of omega-3 polyunsaturated fatty acids (omega-3 PUFA) may lower the incidence of heart failure. Dietary supplementation with omega-3 PUFA exerts metabolic and anti-inflammatory effects that could prevent left ventricle (LV) pathology; however, it is unclear whether these effects occur at clinically relevant doses(More)
Heart failure (HF) is a complex clinical syndrome with multiple aetiologies. Current treatment options can slow the progression to HF, but overall the prognosis remains poor. Clinical studies suggest that high dietary intake of the omega-3 polyunsaturated fatty acids (omega-3PUFA) found in fish oils (eicosapentaenoic and docosahexaenoic acids) may lower the(More)
OBJECTIVE Epidemiological studies suggest that consumption of omega-3 polyunsaturated fatty acids (omega-3 PUFA) decreases the risk of heart failure. We assessed the effects of dietary supplementation with omega-3 PUFA from fish oil on the response of the left ventricle (LV) to arterial pressure overload. METHODS Male Wistar rats were fed a standard chow(More)
Treatment with the omega-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac(More)
Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1)(More)
Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP). We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA; 22:6n3) and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6) in mitochondrial membranes is associated(More)
We have previously shown that high-sugar diets increase mortality and left ventricular (LV) dysfunction during pressure overload. The mechanisms behind these diet-induced alterations are unclear but may involve increased oxidative stress in the myocardium. The present study examined whether high-fructose feeding increased myocardial oxidative damage and(More)
Insulin resistance is a characteristic feature of obesity and type 2 diabetes mellitus and impacts the heart in various ways. Impaired insulin-mediated glucose uptake is a uniformly observed characteristic of the heart in these states, although changes in upstream kinase signaling are variable and dependent on the severity and duration of the associated(More)
A high-fat diet can increase adiposity, leptin secretion, and plasma fatty acid concentration. In hypertension, this scenario may accelerate cardiac hypertrophy and development of heart failure but could be protective by activating peroxisome proliferator-activated receptors and expression of mitochondrial oxidative enzymes. We assessed the effects of a(More)