Karen M. Braas

Learn More
Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to broadly regulate the cellular stress response. In contrast, it is unclear if the PACAP-PAC1 receptor pathway has a role in human psychological stress responses, such as post-traumatic stress disorder (PTSD). Here we find, in heavily traumatized subjects, a sex-specific association of(More)
Cardiac output is regulated by the coordinate interactions of stimulatory sympathetic and inhibitory parasympathetic signals. Intracardiac parasympathetic ganglia are integrative centers of cardiac regulation, and modulation of the parasympathetic drive on the heart is accomplished by altering intrinsic cardiac ganglion neuron excitability. The pituitary(More)
Exposure to chronic stress has been argued to produce maladaptive anxiety-like behavioral states, and many of the brain regions associated with stressor responding also mediate anxiety-like behavior. Pituitary adenylate cyclase activating polypeptide (PACAP) and its specific G protein-coupled PAC(1) receptor have been associated with many of these stress-(More)
Pituitary adenylate cyclase-activating polypeptides (PACAP) have potent regulatory and neurotrophic activities on superior cervical ganglion (SCG) sympathetic neurons with pharmacological profiles consistent for the PACAP-selective PAC(1) receptor. Multiple PAC(1) receptor isoforms are suggested to determine differential peptide potency and receptor(More)
We have investigated the presence of endogenous adenosine and of mechanisms for adenosine uptake and release in chick embryo retinal neurons and photoreceptors grown in purified cultures in the absence of glial cells. Simultaneous autoradiographic and immunocytochemical analysis showed that endogenous adenosine and the uptake mechanism for this nucleoside(More)
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are closely related neurotrophic peptides of the secretin/glucagon family. The two peptides are derived from a common ancestral gene and share many functional attributes in neuronal development/regeneration which occur not only from overlapping receptor(More)
Using specific sensitive antisera against adenosine, we have immunocytochemically localized endogenous adenosine to specific layers of rat, guinea pig, monkey, and human retina. Highest adenosine immunoreactivity was observed in ganglion cells and their processes in the optic nerve fiber layer. Substantial staining was also found throughout the inner(More)
Single nucleotide polymorphisms (SNP) in the genes for pituitary adenylate cyclase-activating polypeptide (PACAP) and the PAC1 receptor have been associated with several psychiatric disorders whose etiology has been associated with stressor exposure and/or dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. In rats, exposure to repeated variate(More)
The high and preferential expression of the PAC(1)(short)HOP1 receptor in postganglionic sympathetic neurons facilitates microarray studies for mechanisms underlying PACAP-mediate neurotrophic signaling in a physiological context. Replicate primary sympathetic neuronal cultures were treated with 100 nM PACAP27 either acutely (9 h) or chronically (96 h)(More)
Anxiety disorders are frequently long-lasting and debilitating for more than 40 million American adults. Although stressor exposure plays an important role in the etiology of some anxiety disorders, the mechanisms by which exposure to stressful stimuli alters central circuits that mediate anxiety-like emotional behavior are still unknown. Substantial(More)