Learn More
Small synthetic molecules termed growth hormone secretagogues (GHSs) act on the pituitary gland and the hypothalamus to stimulate and amplify pulsatile growth hormone (GH) release. A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned(More)
The avermectins are a family of macrocyclic lactones used in the control of nematode and arthropod parasites. Ivermectin (22,23-dihydroavermectin B1a) is widely used as an anthelmintic in veterinary medicine and is used to treat onchocerciasis or river blindness in humans. Abamectin (avermectin B1a) is a miticide and insecticide used in crop protection.(More)
Glutamate-gated chloride channels, members of the ligand-gated ion channel superfamily, have been shown in nematodes and in insects to be a target of the antiparasitic agent avermectin. Two subunits of the Caenorhabditis elegans glutamate-gated chloride channel have been cloned: GluCl-alpha and GluCl-beta. We report the cloning of a Drosophila melanogaster(More)
Glutamate-gated chloride channels have been described in nematodes, insects, crustaceans, and mollusks. Subunits from the nematode and insect channels have been cloned and are phylogenetically related to the GABA and glycine ligand-gated chloride channels. Ligand-gated chloride channels are blocked with variable potency by the nonselective blocker(More)
Targeting protein stability with small molecules has emerged as an effective tool to control protein abundance in a fast, scalable and reversible manner. The technique involves tagging a protein of interest (POI) with a destabilizing domain (DD) specifically controlled by a small molecule. The successful construction of such fusion proteins may, however, be(More)
Xenopus laevis oocytes were injected with mRNA isolated from the free-living nematode Caenorhabditis elegans and the activation and potentiation of a glutamate-sensitive chloride current by a series of avermectin analogs and milbemycin D were determined. There was a strong correlation between the EC50 value determined for current activation in oocytes, the(More)
Many of the subunits of ligand-gated ion channels respond poorly, if at all, when expressed as homomeric channels in Xenopus oocytes. This lack of a ligand response has been thought to result from poor surface expression, poor assembly, or lack of an agonist binding domain. The Caenorhabditis elegans glutamate-gated chloride channel subunit GluClbeta(More)
Membrane currents were recorded from Xenopus laevis oocytes injected with C. elegans poly(A)+ RNA. In such oocytes glutamate activated an inward membrane current that desensitized in the continued presence of glutamate. Glutamate-receptor agonists quisqualate, kainate, and N-methyl-D-aspartate were inactive. The reversal potential of the glutamate-sensitive(More)
Detection of receptor expression in Xenopus oocytes often relies upon functional coupling to second messengers such as Ca2+ or cyclic adenosine monophosphate. To detect intracellular Ca2+, electrophysiological measurement of the endogenous Ca(2+)-activated chloride current (ICl(Ca)) is often used (Dascal, 1987). An alternative utilizes the Ca2+ sensing,(More)