Learn More
Previous studies showed that conotruncal heart malformations can arise with the increase or decrease in alpha1 connexin function in neural crest cells. To elucidate the possible basis for the quantitative requirement for alpha1 connexin gap junctions in cardiac development, a neural crest outgrowth culture system was used to examine migration of neural(More)
Patterning of the ventral head has been attributed to various cell populations, including endoderm, mesoderm, and neural crest. Here, we provide evidence that head and heart development may be influenced by a ventral midline endodermal cell population. We show that the ventral midline endoderm of the foregut is generated directly from the extreme rostral(More)
BACKGROUND Congenital conotruncal malformations frequently involve dextroposed aorta. The pathogenesis of dextroposed aorta is not known but is thought to be due to abnormal looping and/or wedging of the outflow tract during early heart development. We examined the stage of cardiac looping in an experimental model of dextroposed aorta to determine the(More)
Cardiac neural crest ablation results in primary myocardial dysfunction and failure of the secondary heart field to add the definitive myocardium to the cardiac outflow tract. The current study was undertaken to understand the changes in myocardial characteristics in the heart tube, including volume, proliferation, and cell size when the myocardium from the(More)
It has been demonstrated that the septation of the outflow tract of the heart is formed by the cardiac neural crest. Ablation of this region of the neural crest prior to its migration from the neural fold results in anomalies of the outflow and inflow tracts of the heart and the aortic arch arteries. The objective of this study was to examine the migration(More)
  • 1