Learn More
We used transgenic mice in which the promoter sequence for connexin 43 linked to a lacZ reporter was expressed in neural crest but not myocardial cells to document the pattern of cardiac neural crest cells in the caudal pharyngeal arches and cardiac outflow tract. Expression of lacZ was strikingly similar to that of cardiac neural crest cells in quail-chick(More)
Previous studies showed that conotruncal heart malformations can arise with the increase or decrease in alpha1 connexin function in neural crest cells. To elucidate the possible basis for the quantitative requirement for alpha1 connexin gap junctions in cardiac development, a neural crest outgrowth culture system was used to examine migration of neural(More)
The primary heart tube is an endocardial tube, ensheathed by myocardial cells, that develops from bilateral primary heart fields located in the lateral plate mesoderm. Earlier mapping studies of the heart fields performed in whole embryo cultures indicate that all of the myocardium of the developed heart originates from the primary heart fields. In(More)
Mesenchymal derivatives of the neural crest contribute to the connective tissues and blood vessels of the pharyngeal arches, and participate in the septation of the outflow tract of the heart. The present study was designed to determine the nature and timing of alterations in the development of the heart and arch arteries subsequent to diminished neural(More)
The objective of this study was to determine how the coronary artery stems develop in the chick embryo. The hearts of 51 ink-injected and cleared chick embryos, aged embryonic days 6, 6.5, 7, 7.5, 9, and 10, were dissected, examined, and selectively photographed. Two representative hearts from each group were paraffin embedded, serially sectioned at 10(More)
The arterial pole of the heart is the region where the ventricular myocardium continues as the vascular smooth muscle tunics of the aorta and pulmonary trunk. It has been shown that the arterial pole myocardium derives from the secondary heart field and the smooth muscle tunic of the aorta and pulmonary trunk derives from neural crest. However, this neural(More)
In cardiac neural-crest-ablated embryos, the secondary heart field fails to add myocardial cells to the outflow tract and elongation of the tube is deficient. Since that study, we have shown that the secondary heart field provides both myocardium and smooth muscle to the arterial pole. The present study was undertaken to determine whether addition of both(More)
Double-label immunohistochemistry was used to compare early aortic arch artery development in cardiac neural crest-ablated and sham-operated quail embryos ranging from stage 13 to stage 18. The monoclonal antibody QH-1 labeled endothelial cells and their precursors, and HNK-1 labeled migrating neural crest cells. In the sham-operated embryos, the third(More)