Karen L. De Mesy Bentley

Learn More
Serum response factor (SRF) directs programs of gene expression linked to growth and muscle differentiation. To investigate the role of SRF in cardiovascular development, we generated mice in which SRF is knocked out in >80% of cardiomyocytes and >50% of vascular smooth muscle cells (SMC) through SM22alpha-Cre-mediated excision of SRF's promoter and first(More)
Although mature myocytes rely on mitochondria as the primary source of energy, the role of mitochondria in the developing heart is not well known. Here, we find that closure of the mitochondrial permeability transition pore (mPTP) drives maturation of mitochondrial structure and function and myocyte differentiation. Cardiomyocytes at embryonic day (E) 9.5,(More)
Expression of vascular smooth muscle cell (VSMC) markers such as serum response factor (SRF) is complicated in zebrafish because of the ill-defined histology of the dorsal aorta and the presence of perivascular pigment. We report the ultrastructure of aortic cells in 7-day, 1-month, and 3-month-old zebrafish and provide clear evidence for the presence of(More)
Neurologic disease caused by human immunodeficiency virus type 1 (HIV-1) is ultimately refractory to highly active antiretroviral therapy (HAART) because of failure of complete virus eradication in the central nervous system (CNS), and disruption of normal neural signaling events by virally induced chronic neuroinflammation. We have previously reported that(More)
Mammalian cells take up nanoparticles (NPs) and some NPs increase ROS. We use imaging and measure ROS in parallel to evaluate NP-cell interactions with type I-like alveolar epithelial cells exposed to NPs at 1.2 µg/cm(2) . Titanium dioxide (Ti0(2)), gold (Au), silver (Ag), and manganese (Mn) were internalized by R3-1 cells; copper (Cu) NPs were observed at(More)
Cardiac metabolism is finely tuned, and disruption of myocardial bioenergetics can be clinically devastating. Many cardiomyopathies that present early in life are due to disruption of the maturation of these metabolic pathways. However, this bioenergetic maturation begins well before birth, when the embryonic heart is first beginning to beat, and continues(More)
Warburg effect is a hallmark of cancer manifested by continuous prevalence of glycolysis and dysregulation of oxidative metabolism. Glycolysis provides survival advantage to cancer cells. To investigate molecular mechanisms underlying the Warburg effect, we first compared oxygen consumption among hFOB osteoblasts, benign osteosarcoma cells, Saos2, and(More)
We report the first case of primary solid pseudopapillary tumor of the ovary with aggressive behavior and fatal outcome in a 45-year-old woman. The patient presented with weight loss, decrease of appetite, and abdominal bloating for the last several weeks. Computed tomography scan revealed an ovarian mass, omental caking, complex ascites, and 2 hepatic(More)
While it is well known that Staphylococcus aureus establishes chronic implant-associated osteomyelitis by generating and persisting in biofilm, research to elucidate pathogen, and host specific factors controlling this process has been limited due to the absence of a quantitative in vivo model. To address this, we developed a murine tibia implant model with(More)
Metabolic reprogramming in cancer is manifested by persistent aerobic glycolysis and suppression of mitochondrial function and is known as the Warburg effect. The Warburg effect contributes to cancer progression and is considered to be a promising therapeutic target. Understanding the mechanisms used by cancer cells to suppress their mitochondria may lead(More)