Learn More
One of the goals in the treatment for diabetes is to enhance pancreatic beta cell function, proliferation, and survival. This study explores the role of lactogenic hormones, prolactin (PRL) and placental lactogen (PL), in beta cell survival. We have previously shown that transgenic mice expressing mouse placental lactogen-1 (mPL1) in beta cells under the(More)
OBJECTIVES To comprehensively inventory the proteins that control the G1/S cell cycle checkpoint in the human islet and compare them with those in the murine islet, to determine whether these might therapeutically enhance human beta-cell replication, to determine whether human beta-cell replication can be demonstrated in an in vivo model, and to enhance(More)
Harnessing control of human β-cell proliferation has proven frustratingly difficult. Most G1/S control molecules, generally presumed to be nuclear proteins in the human β-cell, are in fact constrained to the cytoplasm. Here, we asked whether G1/S molecules might traffic into and out of the cytoplasmic compartment in association with activation of cell cycle(More)
Hepatocyte growth factor (HGF) is produced in pancreatic mesenchyme-derived cells and in islet cells. In vitro, HGF increases the insulin content and proliferation of islets. To study the role of HGF in the islet in vivo, we have developed three lines of transgenic mice overexpressing mHGF using the rat insulin II promoter (RIP). Each RIP-HGF transgenic(More)
Recent advances in human islet transplantation have highlighted the need for expanding the pool of beta-cells available for transplantation. We have developed three transgenic models in which growth factors (hepatocyte growth factor [HGF], placental lactogen, or parathyroid hormone-related protein) have been targeted to the beta-cell using rat insulin(More)
Type 1 and type 2 diabetes both result from inadequate production of insulin by the beta-cells of the pancreatic islet. Accordingly, strategies that lead to increased pancreatic beta-cell mass, as well as retained or enhanced function of islets, would be desirable for the treatment of diabetes. Although pancreatic beta-cells have long been viewed as(More)
Islet transplantation for diabetes is limited by the availability of human islet donors. Hepatocyte growth factor (HGF) is a potent beta-cell mitogen and survival factor and improves islet transplant outcomes in a murine model. However, the murine model employs renal subcapsular transplant and immunodeficient mice, features not representative of human islet(More)
Hepatocyte growth factor (HGF) increases beta cell proliferation and function in rat insulin promoter (RIP)-targeted transgenic mice. RIP-HGF mouse islets also function superiorly to normal islets in a transplant setting. Here, we aimed to determine whether viral gene transfer of the HGF gene into mouse islets ex vivo could enhance the performance of normal(More)
OBJECTIVE Most knowledge on human beta-cell cycle control derives from immunoblots of whole human islets, mixtures of beta-cells and non-beta-cells. We explored the presence, subcellular localization, and function of five early G1/S phase molecules-cyclins D1-3 and cdk 4 and 6-in the adult human beta-cell. RESEARCH DESIGN AND METHODS Immunocytochemistry(More)
Induction of proliferation in adult human β-cells is challenging. It can be accomplished by introduction of cell cycle molecules such as cyclin-dependent kinase 6 (cdk6) and cyclin D1, but their continuous overexpression raises oncogenic concerns. We attempted to mimic normal, transient, perinatal human β-cell proliferation by delivering these molecules in(More)