Learn More
The metabolism of cholesterol by cytochrome P450 side chain cleavage enzyme is hormonally regulated in steroidogenic tissues via intramitochondrial cholesterol transport. The mediating steroidogenic acute regulatory protein (StAR) is synthesized as a 37-kDa (p37) precursor that is phosphorylated by protein kinase A and cleaved within the mitochondria to(More)
Reactive oxygen species (ROS) are involved in a variety of pathophysiological conditions of the testis, and oxidative stress is known to inhibit ovarian and testicular steroidogenesis. The site of ROS-mediated inhibition of steroidogenesis in the corpus luteum and MA-10 tumor Leydig cells was shown to be the hormone-sensitive mitochondrial cholesterol(More)
The first and rate-limiting step in the biosynthesis of steroid hormones is the transfer of cholesterol into mitochondria, which is facilitated by the steroidogenic acute regulatory (StAR) protein. Recent studies of Leydig cell function have focused on the molecular events controlling steroidogenesis; however, few studies have examined the importance of the(More)
The first and rate-limiting step in the biosynthesis of steroid hormones is the transfer of cholesterol into mitochondria, which is facilitated by the steroidogenic acute regulatory (StAR) protein. Recent study of Leydig cell function has focused on the mechanisms regulating steroidogenesis; however, few investigations have examined the importance of(More)
Steroidogenic acute regulatory protein (StAR) is a nuclear encoded mitochondrial protein that enhances steroid synthesis by facilitating the transfer of cholesterol to the inner membranes of mitochondria in hormonally regulated steroidogenic cells. It is currently assumed that StAR activity commences before or during StAR import into the mitochondrial(More)
The steroidogenic acute regulatory protein (StAR) is a vital mitochondrial protein that is indispensable for the synthesis of steroid hormones in the steroidogenic cells of the adrenal cortex and the gonads. Recent studies have shown that StAR enhances the conversion of the substrate for all steroid hormones, cholesterol, into pregnenolone, probably by(More)
Immune activation results in the activation of adrenal steroidogenesis and inhibition of gonadal steroidogenesis. Previous studies indicated that these effects were caused primarily by activation and suppression of the secretion of ACTH and LH, respectively. However, other evidence indicated a direct effect of the immune system on the gonads. In this study,(More)
With interest in steroidogenic acute regulatory protein (StAR) involvement in the luteolytic process, we studied changes in serum progesterone levels and the concomitant expression of StAR mRNA and protein (37-, 32-, and 30-kDa forms) in postovulatory Day 7 corpora lutea (CL) isolated from rats 1 h after injection with prostaglandin F(2alpha) (PGF(2alpha),(More)
Myogenesis is a several step process that requires genes involved in specifying mesoderm lineage and genes involved in determining muscle identity, differentiation, and patterning. We report here on the isolation, characterization, and expression pattern of a cDNA clone encoded by the previously uncharacterized Drosophila muscle segment homeobox (msh) gene(More)