Karen H. Watanabe

Learn More
Between 1990 and 1994, samples of three shellfish species (i.e. blue crab, Callinectes sapidus;crayfish, Procambarus acutis; and river shrimp, Macrobrachium ohionii) and 16 fish species and were collected at six sites along the lower Mississippi River by the Louisiana Department of Environmental Quality, Office of Water Resources in coordination with the US(More)
Endocrine disrupting chemicals (EDCs) are known to contaminate aquatic environments and alter the growth and reproduction of organisms. The objective of this study was to evaluate the sensitivity and utility of fathead minnow (Pimephales promelas) early life-stages as a model to measure effects of estrogenic and antiestrogenic EDCs on physiological and gene(More)
Endocrine disrupting chemicals (e.g., estrogens, androgens and their mimics) are known to affect reproduction in fish. 17α-ethynylestradiol is a synthetic estrogen used in birth control pills. 17β-trenbolone is a relatively stable metabolite of trenbolone acetate, a synthetic androgen used as a growth promoter in livestock. Both 17α-ethynylestradiol and(More)
Knowledge of possible toxic mechanisms (or modes) of action (MOA) of chemicals can provide valuable insights as to appropriate methods for assessing exposure and effects, thereby reducing uncertainties related to extrapolation across species, endpoints and chemical structure. However, MOA-based testing seldom has been used for assessing the ecological risk(More)
Adverse outcome pathways (AOPs) organize knowledge on the progression of toxicity through levels of biological organization. By determining the linkages between toxicity events at different levels, AOPs lay the foundation for mechanism-based alternative testing approaches to hazard assessment. Here, we focus on growth impairment in fish to illustrate the(More)
Trenbolone, an anabolic androgen, and flutamide, an antiandrogen, are prototypical model compounds for agonism and antagonism of the androgen receptor. We hypothesized that 48 h exposures of female fathead minnows (Pimephales promelas) to environmentally relevant concentrations of these chemicals would alter genes regulated by the androgen receptor and that(More)
Estrogenic chemicals in the aquatic environment have been shown to cause a variety of reproductive anomalies in fish including full sex reversal, intersex, and altered population sex ratios. Two estrogens found in the aquatic environment, 17alpha-ethinylestradiol (EE(2)) and 17beta-estradiol (E(2)), have been measured in wastewater treatment effluents and(More)
Toxicant deliveries (by machine smoking) are compiled and associated cancer risks are calculated for 13 carcinogens from 26 brands of conventional cigarettes categorized as "regular" (R), "light" (Lt), or "ultralight" (ULt), and for a reference cigarette. Eight "potentially reduced exposure product" (PREP) cigarettes are also considered. Because(More)
Endocrine-disrupting chemicals can affect reproduction and development in humans and wildlife. We developed a computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course (DRTC) behaviors for endocrine effects of the aromatase inhibitor, fadrozole (FAD). The model describes adaptive(More)
Jensen et al. [Jensen, K.M., Korte, J.J., Kahl, M.D., Pasha, M.S., Ankley, G.T., 2001. Aspects of basic reproductive biology and endocrinology in the fathead minnow (Pimephales promelas). Comp. Biochem. Physiol. C 128, 127-141.] investigated aspects of the normal reproductive biology of the fathead minnow (FHM, P. promelas), and subsequent studies have(More)