Learn More
Platelets are central players in atherothrombosis development in coronary artery disease. The PKC family provides important intracellular mechanisms for regulating platelet activity, and platelets express several members of this family, including the classical isoforms PKCalpha and PKCbeta and novel isoforms PKCdelta and PKCtheta. Here, we used a genetic(More)
Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time,(More)
Platelets are activated by adhesion to vascular collagen via the immunoglobulin receptor, glycoprotein VI (GPVI). This causes potent signaling toward activation of phospholipase Cgamma2, which bears similarity to the signaling pathway evoked by T- and B-cell receptors. Phosphoinositide 3-kinase (PI3K) plays an important role in collagen-induced platelet(More)
Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule(More)
BACKGROUND Atherothrombosis is a major cause of cardiovascular events. However, animal models to study this process are scarce. OBJECTIVES We describe the first murine model of acute thrombus formation upon plaque rupture to study atherothrombosis by intravital fluorescence microscopy. METHODS Localized rupture of an atherosclerotic plaque in a carotid(More)
In platelets, STIM1 has been recognized as the key regulatory protein in store-operated Ca(2+) entry (SOCE) with Orai1 as principal Ca(2+) entry channel. Both proteins contribute to collagen-dependent arterial thrombosis in mice in vivo. It is unclear whether STIM2 is involved. A key platelet response relying on Ca(2+) entry is the surface exposure of(More)
BACKGROUND Inactivation of integrin αIIbβ3 reverses platelet aggregate formation upon coagulation. RESULTS AND CONCLUSION Platelets from patient (Scott) and mouse (Capn1(-/-) and Ppif(-/-)) blood reveal a dual mechanism of αIIbβ3 inactivation: by calpain-2 cleavage of integrin-associated proteins and by cyclophilin D/TMEM16F-dependent phospholipid(More)
BACKGROUND Collagen acts as a potent surface for platelet adhesion and thrombus formation under conditions of blood flow. Studies using collagen-derived triple-helical peptides have identified the GXX'GER motif as an adhesive ligand for platelet integrin alpha2beta1, and (GPO)(n) as a binding sequence for the signaling collagen receptor, glycoprotein VI(More)
The fibrin(ogen) receptor, integrin αIIbβ3, has a well-established role in platelet spreading, aggregation and clot retraction. How αIIbβ3 contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used αIIbβ3 blockers on tissue factor-induced thrombin generation is linked to(More)
BACKGROUND A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet(More)