Karen G. Lloyd

Learn More
Studies of deeply buried, sedimentary microbial communities and associated biogeochemical processes during Ocean Drilling Program Leg 201 showed elevated prokaryotic cell numbers in sediment layers where methane is consumed anaerobically at the expense of sulfate. Here, we show that extractable archaeal rRNA, selecting only for active community members in(More)
Half of the microbial cells in the Earth's oceans are found in sediments. Many of these cells are members of the Archaea, single-celled prokaryotes in a domain of life separate from Bacteria and Eukaryota. However, most of these archaea lack cultured representatives, leaving their physiologies and placement on the tree of life uncertain. Here we show that(More)
Members of the highly diverse Miscellaneous Crenarchaeotal Group (MCG) are globally distributed in various marine and continental habitats. In this study, we applied a polyphasic approach (rRNA slot blot hybridization, quantitative PCR (qPCR) and catalyzed reporter deposition FISH) using newly developed probes and primers for the in situ detection and(More)
Sediments overlying a brine pool methane seep in the Gulf of Mexico (Green Canyon 205) were analyzed using molecular and geochemical approaches to identify geochemical controls on microbial community composition and stratification. 16S rRNA gene and rRNA clone libraries, as well as mcrA gene clone libraries, showed that the archaeal community consists(More)
Uncultured ANaerobic MEthanotrophic (ANME) archaea are often assumed to be obligate methanotrophs that are incapable of net methanogenesis, and are therefore used as proxies for anaerobic methane oxidation in many environments in spite of uncertainty regarding their metabolic capabilities. Anaerobic methane oxidation regulates methane emissions in marine(More)
Anaerobic oxidation of methane (AOM) was investigated in hydrothermal sediments of Guaymas Basin based on δ(13)C signatures of CH(4), dissolved inorganic carbon and porewater concentration profiles of CH(4) and sulfate. Cool, warm and hot in-situ temperature regimes (15-20 °C, 30-35 °C and 70-95 °C) were selected from hydrothermal locations in Guaymas Basin(More)
BACKGROUND Subsurface fluids from deep-sea hydrocarbon seeps undergo methane- and sulfur-cycling microbial transformations near the sediment surface. Hydrocarbon seep habitats are naturally patchy, with a mosaic of active seep sediments and non-seep sediments. Microbial community shifts and changing activity patterns on small spatial scales from seep to(More)
There is no universally accepted method to quantify bacteria and archaea in seawater and marine sediments, and different methods have produced conflicting results with the same samples. To identify best practices, we compiled data from 65 studies, plus our own measurements, in which bacteria and archaea were quantified with fluorescent in situ hybridization(More)
The methanogenic community in hydrothermally active sediments of Guaymas Basin (Gulf of California, Mexico) was analyzed by PCR amplification, cloning, and sequencing of methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Members of the Methanomicrobiales and Methanosarcinales dominated the mcrA and 16S rRNA clone libraries from the upper 15 cm of the(More)
For accurate quantification of DNA and RNA from environmental samples, yield loss during nucleic acid purification has to be minimized. Quantitative PCR (qPCR) and reverse transcription (RT)-qPCR require a trade-off between maximizing yield and removing inhibitors. We compared DNA and RNA yield and suitability for quantitative SYBR Green PCR and RT-PCR(More)