Karen E Sears

Learn More
A reduction in the number of digits has evolved many times in tetrapods, particularly in cursorial mammals that travel over deserts and plains, yet the underlying developmental mechanisms have remained elusive. Here we show that digit loss can occur both during early limb patterning and at later post-patterning stages of chondrogenesis. In the 'odd-toed'(More)
The earliest fossil bats resemble their modern counterparts in possessing greatly elongated digits to support the wing membrane, which is an anatomical hallmark of powered flight. To quantitatively confirm these similarities, we performed a morphometric analysis of wing bones from fossil and modern bats. We found that the lengths of the third, fourth, and(More)
To assess the ability of protein-coding mutations to contribute to subtle, inter-specific morphologic evolution, here, we test the hypothesis that mutations within the protein-coding region of runt-related transcription factor 2 (Runx2) have played a role in facial evolution in 30 species from a naturally evolving group, the mammalian order Carnivora.(More)
Throughout their evolutionary histories, marsupial mammals have been taxonomically and morphologically less diverse than their sister taxa the placentals. Because of this, it has been proposed that the evolution of marsupials has been constrained by the functional requirements of their mode of reproduction. Marsupials give birth after short gestation times(More)
Two common inflammatory skin disorders with impaired barrier, atopic dermatitis (AD) and psoriasis, share distinct genetic linkage to the Epidermal Differentiation Complex (EDC) locus on 1q21. The EDC is comprised of tandemly arrayed gene families encoding proteins involved in skin cell differentiation. Discovery of semi-dominant mutations in filaggrin(More)
In contrast to placentals, marsupials are born with forelimbs that are greatly developmentally advanced relative to their hind limbs. Despite significant interest, we still do not know why this is the case, or how this difference is achieved developmentally. Studies of prechondrogenic and chondrogenic limbs have supported the traditional hypothesis that(More)
Proper regulation of growth is essential to all stages of life, from development of the egg into an embryo to the maintenance of normal cell cycle progression in adults. However, despite growth's importance to basic biology and health, little is known about how mammalian growth is regulated. In this study, we investigated the molecular basis of the highly(More)
A primary goal of evolutionary biology is to identify the factors that shape phenotypic evolution. According to the theory of natural selection, phenotypic evolution occurs through the differential survival and reproduction of individuals whose traits are selectively advantageous relative to other individuals in the population. This implies that evolution(More)
Two bat families, the leaf-nosed (Phyllostomidae) and fruit bats (Pteropodidae), have independently evolved the ability to consume plant resources. However, despite their similar ages, species richness and the strong selective pressures placed on the evolution of skull shape by plant-based foods, phyllostomids display more craniofacial diversity than(More)
A fundamental question in biology is “how is growth differentially regulated during development to produce organs of particular sizes?” We used a new model system for the study of differential organ growth, the limbs of the opossum (Monodelphis domestica), to investigate the cellular and molecular basis of differential organ growth in mammals. Opossum(More)