Learn More
It is widely assumed that the key rate-limiting step in gene activation is the recruitment of RNA polymerase II (Pol II) to the core promoter. Although there are well-documented examples in which Pol II is recruited to a gene but stalls, a general role for Pol II stalling in development has not been established. We have carried out comprehensive Pol II(More)
Emerging evidence indicates that gene expression in higher organisms is regulated by RNA polymerase II stalling during early transcription elongation. To probe the mechanisms responsible for this regulation, we developed methods to isolate and characterize short RNAs derived from stalled RNA polymerase II in Drosophila cells. Significant levels of these(More)
Regulation of gene expression is integral to the development and survival of all organisms. Transcription begins with the assembly of a pre-initiation complex at the gene promoter, followed by initiation of RNA synthesis and the transition to productive elongation. In many cases, recruitment of RNA polymerase II (Pol II) to a promoter is necessary and(More)
Proper regulation of gene expression is essential for the differentiation, development and survival of all cells and organisms. Recent work demonstrates that transcription of many genes, including key developmental and stimulus-responsive genes, is regulated after the initiation step, by pausing of RNA polymerase II during elongation through the(More)
The Paf1 complex in yeast has been reported to influence a multitude of steps in gene expression through interactions with RNA polymerase II (Pol II) and chromatin-modifying complexes; however, it is unclear which of these many activities are primary functions of Paf1 and are conserved in metazoans. We have identified and characterized the Drosophila(More)
Drosophila contains one (dCDK12) and humans contain two (hCDK12 and hCDK13) proteins that are the closest evolutionary relatives of yeast Ctk1, the catalytic subunit of the major elongation-phase C-terminal repeat domain (CTD) kinase in Saccharomyces cerevisiae, CTDK-I. However, until now, neither CDK12 nor CDK13 has been demonstrated to be a bona fide CTD(More)
Recent years have witnessed a sea change in our understanding of transcription regulation: whereas traditional models focused solely on the events that brought RNA polymerase II (Pol II) to a gene promoter to initiate RNA synthesis, emerging evidence points to the pausing of Pol II during early elongation as a widespread regulatory mechanism in higher(More)
Metazoan transcription is controlled through either coordinated recruitment of transcription machinery to the gene promoter or regulated pausing of RNA polymerase II (Pol II) in early elongation. We report that a striking difference between genes that use these distinct regulatory strategies lies in the "default" chromatin architecture specified by their(More)
Recent genome-wide studies in metazoans have shown that RNA polymerase II (Pol II) accumulates to high densities on many promoters at a rate-limited step in transcription. However, the status of this Pol II remains an area of debate. Here, we compare quantitative outputs of a global run-on sequencing assay and chromatin immunoprecipitation sequencing assays(More)
Anti-sense transcription originating upstream of mammalian protein-coding genes is a well-documented phenomenon, but remarkably little is known about the regulation or function of anti-sense promoters and the non-coding RNAs they generate. Here we define at nucleotide resolution the divergent transcription start sites (TSSs) near mouse mRNA genes. We find(More)