Learn More
It is widely assumed that the key rate-limiting step in gene activation is the recruitment of RNA polymerase II (Pol II) to the core promoter. Although there are well-documented examples in which Pol II is recruited to a gene but stalls, a general role for Pol II stalling in development has not been established. We have carried out comprehensive Pol II(More)
Emerging evidence indicates that gene expression in higher organisms is regulated by RNA polymerase II stalling during early transcription elongation. To probe the mechanisms responsible for this regulation, we developed methods to isolate and characterize short RNAs derived from stalled RNA polymerase II in Drosophila cells. Significant levels of these(More)
Metazoan transcription is controlled through either coordinated recruitment of transcription machinery to the gene promoter or regulated pausing of RNA polymerase II (Pol II) in early elongation. We report that a striking difference between genes that use these distinct regulatory strategies lies in the "default" chromatin architecture specified by their(More)
Transcription of immediate early genes (IEGs) in neurons is highly sensitive to neuronal activity, but the mechanism underlying these early transcription events is largely unknown. We found that several IEGs, such as Arc (also known as Arg3.1), are poised for near-instantaneous transcription by the stalling of RNA polymerase II (Pol II) just downstream of(More)
Prdm14 is a sequence-specific transcriptional regulator of embryonic stem cell (ESC) pluripotency and primordial germ cell (PGC) formation. It exerts its function, at least in part, through repressing genes associated with epigenetic modification and cell differentiation. Here, we show that this repressive function is mediated through an ETO-family(More)
The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores(More)
7 Corresponding authors 2 The genomic program for development depends on the precise coordination of gene activity in space and time 1. It is widely assumed that the key rate-limiting step in gene activation is the recruitment of RNA polymerase II (Pol II) to the core promoter 2. Although there are well-documented examples where Pol II is recruited to a(More)
Regulation of gene expression is integral to the development and survival of all organisms. Transcription begins with the assembly of a pre-initiation complex at the gene promoter 1 , followed by initiation of RNA synthesis and the transition to productive elongation 2–4. In many cases, recruitment of RNA polymerase II (Pol II) to a promoter is necessary(More)
  • 1