Karen A. Heichman

Learn More
BACKGROUND About half of Americans 50 to 75 years old do not follow recommended colorectal cancer (CRC) screening guidelines, leaving 40 million individuals unscreened. A simple blood test would increase screening compliance, promoting early detection and better patient outcomes. The objective of this study is to demonstrate the performance of an improved(More)
The Hin recombinase of Salmonella normally catalyzes a site-specific DNA inversion reaction that is very efficient when the Fis protein and a recombinational enhancer sequence are present. The mechanism of this recombination reaction has been investigated by analyzing the formation and structure of knots generated in different plasmid substrates in vitro.(More)
Inappropriate activation of developmental pathways is a well-recognized tumor-promoting mechanism. Here we show that overexpression of the homeoprotein Six1, normally a developmentally restricted transcriptional regulator, increases TGF-beta signaling in human breast cancer cells and induces an epithelial-mesenchymal transition (EMT) that is in part(More)
Six1 is a developmentally regulated homeoprotein with limited expression in most normal adult tissues and frequent misexpression in a variety of malignancies. Here we demonstrate, using a bitransgenic mouse model, that misexpression of human Six1 in adult mouse mammary gland epithelium induces tumors of multiple histological subtypes in a dose-dependent(More)
CDC16 and CDC27 were identified as genes in S. cerevisiae necessary to limit DNA replication to once per cell cycle. A screen for mutants that overreplicated their DNA uncovered new conditional alleles that cause accumulation of up to 8C DNA. DNA overreplication involves all chromosomes and does not require passage through mitosis or another START. It(More)
The Hin site-specific recombination system normally promotes inversion of DNA between two recombination sites in inverted orientation. We show that the rate of deletion of DNA between two directly repeated recombination sites is 10-300 times slower than inversion between sites in their native configuration as measured in vivo and in vitro, respectively. In(More)
Cellular DNA undergoes profound changes in methylation during cancer development, with hypermethylation occurring in specific gene promoters, amidst a backdrop of generalized hypomethylation. DNA methylation in cancer often causes the silencing of tumor suppressors and other genes important for cellular growth, regulation and differentiation. Over the past(More)
The Hin protein binds to two cis-acting recombination sites and catalyzes a site-specific DNA inversion reaction that regulates the expression of flagellin genes in Salmonella. In addition to the Hin protein and the two recombination sites that flank the invertible segment, a third cis-acting recombinational enhancer sequence and the Fis protein, which(More)
The polyubiquitin gene, UB14, of Saccharomyces cerevisiae is regulated by a variety of environmental stresses and physiological conditions. After exposure of rapidly growing yeast cells to DNA-damaging agents (4-nitroquinoline-1-oxide and N-methyl-N'-nitro-N-nitrosoguanidine), intracellular levels of UB14 transcript increased rapidly. Induction of UB14(More)