Learn More
Gap junction communication between microvascular endothelial cells has been proposed to contribute to the coordination of microvascular function. Septic shock may attenuate microvascular cell-to-cell communication. We hypothesized that lipopolysaccharide (LPS) attenuates communication between microvascular endothelial cells derived from rat hindlimb(More)
We have previously shown in cultured rat microvascular endothelial cells (RMEC) that lipopolysaccharide (LPS) stimulates a protein tyrosine kinase (PTK)-dependent reduction in cellular coupling. We hypothesized that connexin 43 (Cx43) becomes phosphorylated following exposure to LPS. Cx43 was immunoprecipitated from control and LPS-treated RMEC monolayers.(More)
Although age-related structural and functional changes in skeletal muscle have been described extensively, little is known about the accompanying hemodynamic and structural changes in the microvasculature. The objective of this study was to use the extensor digitorum longus muscle in mid-aged (12 months) and old (28 months) Fisher 344 male rats to evaluate(More)
Although the effect of endothelin-1 (ET-1) on vascular tone has been studied extensively at the arterial/arteriolar level, little is known about the direct effect of ET-1 at the level of the capillary. Using intravital microscopy, we determined capillary red blood cell velocity and arteriolar diameter responses to ET-1, ET(A)-receptor blocker BQ-123, and(More)
We hypothesized that normotensive sepsis affects the ability of the microcirculation to appropriately regulate microregional red blood cell (RBC) flux. An extensor digitorum longus muscle preparation for intravital study was used to compare the distribution of RBC flux and the functional hyperemic response in SHAM rats and rats made septic by cecal ligation(More)
Electrical coupling along the endothelium is central in the arteriolar conducted response and in control of vascular resistance. It has been shown that exposure of endothelium to lipopolysaccharide (LPS, an initiating factor in sepsis) reduces intercellular communication in vitro and in vivo. The molecular basis for this reduction is not known. We examined(More)
Lipopolysaccharide endotoxin and interferon-gamma induced inducible nitric oxide synthase (iNOS) protein expression and nitrite/nitrate formation in microvascular endothelial cell cultures (ECs) derived from rat skeletal muscle. Pretreatment of ECs with ascorbate accumulated a large amount of ascorbate inside the cells and consequently decreased both(More)
PURPOSE Impaired microvascular perfusion in sepsis is not treated effectively because its mechanism is unknown. Since inflammatory and coagulation pathways cross-activate, we tested if stoppage of blood flow in septic capillaries is due to oxidant-dependent adhesion of platelets in these microvessels. METHODS Sepsis was induced in wild type, eNOS(-/-),(More)
We have previously shown that increased nitric oxide (NO) production in sepsis impairs arteriolar-conducted vasoconstriction cGMP independently and that the gap junction protein connexin (Cx) 37 is required for this conducted response. In the present study, we hypothesized that NO impairs interendothelial electrical coupling in sepsis by targeting Cx37. We(More)
OBJECTIVE To determine the roles of nitric oxide synthase (NOS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in the impairment of capillary blood flow in sepsis and in the reversal of this impairment by ascorbate. DESIGN Prospective, controlled laboratory study. SETTING Animal laboratory in research institute. SUBJECTS Adult male(More)