Karel L Planken

Learn More
Activation of the complement system generates potent chemoattractants and leads to the opsonization of cells for immune clearance. Short-lived protease complexes cleave complement component C3 into anaphylatoxin C3a and opsonin C3b. Here we report the crystal structure of the C3 convertase formed by C3b and the protease fragment Bb, which was stabilized by(More)
In this contribution the use of Analytical Ultracentrifugation (AUC) for the modern analysis of colloids is reviewed. Since AUC is a fractionation technique, distributions of the sedimentation coefficient, particle size and shape, molar mass and density can be obtained for particle sizes spanning the entire colloidal range. The Ångström resolution and the(More)
We present a convenient and low-cost method to prepare milligram amounts of completely monodisperse DNA restriction fragments in a physico-chemical laboratory setting to study (in part II) the effect of limited flexibility on the concentration dependent sedimentation velocity. Four fragments of 200, 400, 800, and 1600 bp were designed to span a range of(More)
We report sedimentation velocity and equilibrium measurements performed with an analytical ultracentrifuge to elucidate the effects of limited flexibility on the transport properties of semiflexible, monodisperse, double-stranded, blunt-ended DNA restriction fragments. We study a homologous series of fragments with 400, 800, and 1600 base pairs (3 to 11(More)
Activation of the complement system generates potent chemoattractants and opsonizes cells for immune clearance. Short-lived protease complexes cleave complement component C3 into anaphylatoxin C3a and opsonin C3b. Here we report the crystal structure of the C3 convertase formed by C3b and the protease fragment Bb, which was stabilized by the bacterial(More)
We demonstrate the existence of discrete single molecular [Mo(132)] Keplerate-type clusters in aqueous solution. Starting from a discrete spherical [Mo(132)] cluster, the formation of an open-basket-type [Mo(116)] defect structure is shown for the first time in solution using analytical ultracentrifugation sedimentation velocity experiments.
We report a method to determine the particle size distribution of small colloidal silica spheres via analytical ultracentrifugation and show that the average particle size, variance, standard deviation, and relative polydispersity can be obtained from a single sedimentation velocity (SV) analytical ultracentrifugation (AUC) experiment. The particle size(More)
We report an analytical ultracentrifugation study on sedimentation in dilute stable dispersions of uniform, magnetic iron oxide (Fe3O4) colloids. On increase of the dipolar coupling constant, tuned by the average particle size, the linear concentration dependence of the sedimentation velocity shows an abrupt transition from the hindered sedimentation(More)
  • 1