Learn More
Most hydrogen peroxide is currently produced by the selective hydrogenation of 2-ethylanthraquinone (EAQ) to 2-ethylanthrahydroquinone (EAHQ), followed by treatment with dioxygen; this produces hydrogen peroxide and regenerates 2-ethylanthraquinone. We have developed novel catalysts for this process that are based on palladium supported on very lipophilic(More)
Six gel-type functional resins, that is, three poly-DMAA-co-TMPTP (DMAA = N,N-dimethylacrylamide, TMPTP = trimethylolpropyltrimethacrylate) samples with different degrees of cross-linking (0.6, 1.2, 1.7 % mol) and three poly-DMAA-co-MA-co-TMPTP (MA = methacrylic acid, ca. 5.5 % mol) samples with 1.7, 3.5, and 7 % mol cross-linking were investigated with(More)
Hyper-cross-linked resins stemming from a gel-type poly-chloromethylated poly(styrene-co-divinylbenzene) resin (GT) have been investigated by a multi-methodological approach based on elemental analysis, scanning electron microscopy, X-ray microanalysis, and solvent absorption. The hyper-cross-linking of the parent resin was accomplished by Friedel-Crafts(More)
The cross-linked polyurea support EnCat 30, its related macromolecular complex Pd(II)/EnCat 30 and its related Pd(0)/EnCat 30NP nanocomposite are thoroughly investigated with SEM, TEM, ISEC and ESR in the solid state (SEM and TEM) and swollen state in THF (ISEC and ESR). Pd(II)/EnCat 30 and its related Pd(0)/EnCat 30NP are obtained by microencapsulation of(More)
The polymer framework of water-swollen copolymers of N,N-dimethylacrylamide, acrylamido-2-methylpropanesulfonic acid, and ethylenedimethacrylate (nominal cross-linking degrees of 4, 8, and 20 mol %) is composed of highly expanded domains, with "pores" not less than 6 nm in diameter. When the 4% cross-linked copolymer (DAE 26-4) is swollen with a 10(-4) M(More)
Two hypercross-linked resins stemming from a gel-type poly-chloromethylated styrene-divinylbenzene resin (GT) in beaded form are investigated with a combination of spectroscopic techniques (EPR and time-domain (TD)-NMR spectroscopy) to evaluate their use as supports for the development of operationally flexible heterogeneous metal catalysts, suitable to be(More)