Karel Heremans

Learn More
A variety of techniques, including high-pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single-domain antigen binders derived from camelid heavy-chain antibodies with specificities for(More)
The effect of pressure on the structure and dynamics of proteins is discussed in the framework of the pressure-temperature stability phase diagram. The elastic (reversible) properties, thermal expansion, compressibility and heat capacity, are correlated with the entropy, volume, and the coupling between entropy and volume fluctuations respectively. The(More)
We have performed a 800 ps molecular dynamics simulation of bovine pancreatic trypsin inhibitor (BPTI) in water coupled to a pressure bath at 1, 10,000, 15,000, and 20,000 bar. The simulation reproduces quite well the experimental behavior of the protein under high pressure. The protein keeps its globular form, but adopts a different conformation with a(More)
We studied the cold unfolding of myoglobin with Fourier transform infrared spectroscopy and compared it with pressure and heat unfolding. Because protein aggregation is a phenomenon with medical as well as biotechnological implications, we were interested in both the structural changes as well as the aggregation behavior of the respective unfolded states.(More)
The thermodynamic parameters for the heat activation of the sporangiospores of Phycomyces blakesleeanus were determined. For the apparent activation enthalpy (DeltaH(#)) a value of 1,151 kJ/mol was found, whereas a value of 3,644 J./ degrees K.mol was calculated for the apparent activation entropy (DeltaS(#)). n-Alcohols (from methanol to octanol),(More)
The (Na+ + K+)-stimulated ATPase activity decreases with increasing pressure and a plot of the logarithm of the activity versus pressure shows a change in slope at a defined breakpoint pressure (Pb). The value of Pb increases linearly with increasing temperature. A dT/dP value of 27.7 +- 0.4 (S.D.) K/1000 atm is obtained. This is in very good agreement with(More)
A hydrostatic pressure of 1.5 GPa induces changes in the secondary structure of bovine pancreatic trypsin inhibitor (BPTI) as revealed by the analysis of the amide I' band with Fourier-transform infrared (FTIR) spectroscopy in the diamond anvil cell. The features of the secondary structure remain distinct at high pressure suggesting that the protein does(More)
High hydrostatic pressure induces conformational changes in proteins ranging from compression of the molecules to loss of native structure. In this tutorial review we describe how the interplay between the volume change and the compressibility leads to pressure-induced unfolding of proteins and dissociation of amyloid fibrils. We also discuss the effect of(More)