Karel Chalupsky

Learn More
BACKGROUND AND PURPOSE Red wine polyphenols (RWPs) inhibit the expression of vascular endothelial growth factor (VEGF), a major pro-angiogenic and pro-atherosclerotic factor, in vascular smooth muscle cells (VSMCs). The aim of this study was to identify which red wine polyphenols were inhibitory and to determine the mechanism underlying the inhibitory(More)
BACKGROUND Ursodeoxycholic acid (UDCA) is used to treat primary biliary cirrhosis, intrahepatic cholestasis, and other cholestatic conditions. Although much has been learned about the molecular basis of the disease pathophysiology, our understanding of the effects of UDCA remains unclear. Possibly underlying its cytoprotective, anti-apoptotic,(More)
Liver fibrosis is characterized by the deposition and increased turnover of extracellular matrix. This process is controlled by matrix metalloproteinases (MMPs), whose expression and activity dynamically change during injury progression. MMP-19, one of the most widely expressed MMPs, is highly expressed in liver; however, its contribution to liver pathology(More)
The signalling pathway elicited by hepatocyte growth factor (HGF) and its receptor c-Met is indispensable for liver development and regeneration. It has been described that c-Met is released from the cell surface by a disintegrin and metalloprotease 10 (ADAM10) resulting in a soluble c-Met form known as sMet. Using the human hepatocellular HepG2 and hepatic(More)
AIMS Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS(More)
Matrix metalloproteinases (MMPs) are potential biomarkers for disease activity in inflammatory bowel disease (IBD). However, clinical trials targeting MMPs have not succeeded, likely due to poor understanding of the biological functions of individual MMPs. Here, we explore the role of MMP-19 in IBD pathology. Using a DSS-induced model of colitis, we show(More)
Netherton syndrome (NS) is a severe skin disease caused by the loss of protease inhibitor LEKTI, which leads to the dysregulation of epidermal proteases and severe skin-barrier defects. KLK5 was proposed as a major protease in NS pathology, however its inactivation is not sufficient to rescue the lethal phenotype of LEKTI-deficient mice. In this study, we(More)
UNLABELLED A Disintegrin And Metalloprotease (ADAM) 10 exerts essential roles during organ development and tissue integrity in different organs, mainly through activation of the Notch pathway. However, only little is known about its implication in liver tissue physiology. Here we show that in contrast to its role in other tissues, ADAM10 is dispensable for(More)
The oxidation of N-hydroxylated compounds may result in production of nitrogen oxides, including nitric oxide (NO). Oxidation may be independent on NO-synthase. Production of nitrites and nitrates via NO from formaldoxime and glyceryl trinitrate was studied and compared. Superoxide ion, ions Fe2+ and Fe3+, methemoglobin and methemoglobin + NADPH + methylene(More)
Diaphorase was studied as a possible oxidoreductase participating in NO production from some vasorelaxants. In the presence of NADH or NADPH, diaphorase can convert selected NO donors, glycerol trinitrate (GTN) and formaldoxime (FAL) to nitrites and nitrates with NO as an intermediate. This activity of diaphorase was inhibited by diphenyleneiodonium (DPI)(More)
  • 1