Learn More
Long-term treatment of levodopa for Parkinson's disease (PD) patients is known to elevate homocysteine level in their plasma. The present study was designed to examine the possible neurotoxic effects of the increased homocysteine level on the dopaminergic system. Homocysteine was administered into Sprague-Dawley male rats intracerebroventricularly or(More)
Male Sprague-Dawley rats were administered 25 mg/kg, intraperitoneally (i.p.) cocaine-HCI twice daily for 14 consecutive days (total of 50 mg/kg), while control animals received an equivalent volume of 0.9% saline. After three days of withdrawal, the animals were sacrificed for dissection of striatal (STR) and nucleus accumbens (NA) brain regions. The(More)
AIMS Lactate dehydrogenase (LDH)-A is highly expressed in diverse human malignant tumors, parallel to aggressive metastatic disease, resistance to radiation/chemotherapy and clinically poor outcome. Although this enzyme constitutes a plausible target in treatment of advanced cancer, there are few known LDH-A inhibitors. STUDY DESIGN In this work, we(More)
The neuropathology of Parkinson's disease (PD) involves a reduction of endogenous antioxidant enzyme systems, heightened oxidative stress and mitochondrial aberrations in the region of the substantia nigra. Similarly, neurotoxins commonly used to investigate PD pathology include 6-hydroxydopamine (6-OHDA), a powerful hydrogen peroxide (H(2)0(2)) pro-oxidant(More)
Our previous studies showed that S-adenosyl-methionine (SAM) induced Parkinson's disease-like changes in rat. It caused death to dopamine neurons in the substantia nigra, which appeared shrunken and fragmented, indicative of apoptosis-like changes (Charlton and Crowell [1995] Mol. Chem. Neuropathol. 26:269-284; Charlton [1997] Life Sci. 61:495-502). In this(More)
Exposing the developing brain to the N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine (PCP) has been shown to cause deficits in neurobehavioral functions, particularly on learning and memory and seizure sensitivity. Besides acting as a noncompetitive NMDA antagonist, PCP at high doses is known to affect the dopaminergic system. The present(More)
Elevated production of hydrogen peroxide (H2O2) in the central nervous system has been implicated in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, ischemic reperfusion, stroke, and Alzheimer's disease. Pyruvic acid has a critical role in energy metabolism and a capability to nonenzymatically decarboxylate H2O2 into(More)
The neurotoxin, 6-hydroxydopamine (6-OHDA) has been implicated in the neurodegenerative process of Parkinson's disease. The current study was designed to elucidate the toxicological effects of 6-OHDA on energy metabolism in neuroblastoma (N-2A) cells. The toxicity of 6-OHDA corresponds to the total collapse of anaerobic/aerobic cell function, unlike other(More)
Thymoquinone (TQ), the main pharmacological active ingredient within the black cumin seed (Nigella sativa) is believed to be responsible for the therapeutic effects on chronic inflammatory conditions such as arthritis, asthma and neurodegeneration. In this study, we evaluated the potential anti-inflammatory role of TQ in lipopolysaccharide (LPS)-stimulated(More)
Environmental or occupational exposure to high levels of manganese (Mn) can lead to manganism, a symptomatic neuro-degenerative disorder similar to idiopathic Parkinson's disease. The underlying mechanism of Mn neurotoxicity remains unclear. In this study, we evaluate the primary toxicological events associated with MnCl(2) toxicity in rat PC12 cells using(More)