Kara M. Swanson

Learn More
Streptococcus uberis is a prevalent causative organism of mastitis and resides naturally in the environment of the dairy cow making prevention of the disease difficult. A bovine cDNA microarray comprising approximately 22,000 expressed sequence tags was used to evaluate the transcriptional changes that occur in the mammary gland after the onset of clinical(More)
The expression of a beta-defensin, the lingual antimicrobial peptide (LAP), in response to mastitis was investigated by real-time PCR of RNA from mastitic and control udder quarters. There was a positive relationship between somatic cell count in milk and LAP expression. In situ hybridization showed that LAP mRNA was expressed in epithelial cells of(More)
We have used cDNA microarray analysis to identify genes that play a role in bovine mammary involution. Involution was induced by termination of milking, and alveolar tissue was collected from 48 nonpregnant Friesian cows in mid lactation sacrificed at 0, 6, 12, 18, 24, 36, 72, and 192 h (n = 6/group) postmilking. The most highly upregulated genes were those(More)
Streptococcus uberis is commonly found in the environment and in association with various bovine body sites and is a major cause of bovine mastitis. Moreover, S. uberis is known to produce a variety of bacteriocin-like inhibitory substances, antimicrobial agents that generally inhibit closely related bacterial species. In this respect, S. uberis strain 42(More)
It is well established that milk production of the dairy cow is a function of mammary epithelial cell (MEC) number and activity and that these factors can be influenced by diverse environmental influences and management practises (nutrition, milk frequency, photoperiod, udder health, hormonal and local effectors). Thus, understanding how the mammary gland(More)
A potential role for epigenetic mechanisms in the regulation of mammary function in the dairy cow is emerging. Epigenetics is the study of heritable changes in genome function that occur because of chemical changes rather than DNA sequence changes. DNA methylation is an epigenetic event that results in the silencing of gene expression and may be passed on(More)
In dairy cows, mammary gland involution, and thus a decline in milk production, occurs following peak lactation. To examine the cell signaling pathways regulating involution of the mammary gland, signal transducer and activator of transcription factors (STAT5 and 3), suppressors of cytokine signaling (SOCS1-3 and CIS), insulin-like growth factors (IGF1 and(More)
In dairy cows, extended periods of nonmilking results in reduced milk secretion, modifications in milk composition, and eventually involution of the mammary glands. The aim of this study was to determine the effect of extended nonmilking periods on the recovery of milk yield and composition, and levels of prolactin and insulin-like growth factor-I in(More)
  • 1