Kar-Chun Tan

Learn More
Stagonospora nodorum is a major necrotrophic fungal pathogen of wheat (Triticum aestivum) and a member of the Dothideomycetes, a large fungal taxon that includes many important plant pathogens affecting all major crop plant families. Here, we report the acquisition and initial analysis of a draft genome sequence for this fungus. The assembly comprises(More)
Gna1, a gene encoding a Galpha subunit, a key component of signal transduction pathways, has been cloned and characterized in the wheat pathogen Stagonospora nodorum. Analysis of Gna1 expression during infection revealed a slight decrease in transcript levels shortly after germination, after which levels steadily increased until sporulation. Inactivation of(More)
An expressed sequence tag encoding a putative mannitol 1-phosphate dehydrogenase (Mpd1) has been characterized from the fungal wheat pathogen Stagonospora nodorum. Mpd1 was disrupted by insertional mutagenesis, and the resulting mpd1 strains lacked all detectable NAD-linked mannitol 1-phosphate dehydrogenase activity (EC 1.1.1.17). The growth rates,(More)
SUMMARY Phytopathogenic fungi must feed on their hosts to propagate and cause disease. Their ability to access the rich nutrient supply offered by living plants is one of the most obvious properties that distinguish pathogens from saprophytes. Successful invasion by pathogens depends as much on their ability to utilize the available nutrient sources offered(More)
SUMMARY Peer-reviewed literature is today littered with exciting new tools and techniques that are being used in all areas of biology and medicine. Transcriptomics, proteomics and, more recently, metabolomics are three of these techniques that have impacted on fungal plant pathology. Used individually, each of these techniques can generate a plethora of(More)
The necrotrophic fungus Stagonospora nodorum produces multiple proteinaceous host-selective toxins (HSTs) which act in effector triggered susceptibility. Here, we report the molecular cloning and functional characterization of the SnTox3-encoding gene, designated SnTox3, as well as the initial characterization of the SnTox3 protein. SnTox3 is a 693 bp(More)
UNLABELLED SUMMARY Stagonospora nodorum is an important pathogen of wheat and related cereals, causing both a leaf and glume blotch. This review summarizes recent advances in our understanding of taxonomy, control and pathogenicity of this species. TAXONOMY Stagonospora (syn. Septoria) nodorum (Berk.) Castell. and Germano [teleomorph: Phaeosphaeria (syn.(More)
The Stagonospora nodorum StuA transcription factor gene SnStuA was identified by homology searching in the genome of the wheat pathogen Stagonospora nodorum. Gene expression analysis revealed that SnStuA transcript abundance increased throughout infection and in vitro growth to peak during sporulation. To investigate its role, the gene was deleted by(More)
The fungus Stagonospora nodorum is a causal agent of leaf and glume blotch disease of wheat. It has been previously shown that inactivation of heterotrimeric G protein signaling in Stagonospora nodorum caused development defects and reduced pathogenicity [P. S. Solomon et al., Mol. Plant-Microbe Interact. 17:456-466, 2004]. In this study, we sought to(More)
The G protein alpha-subunit (Gna1) in the wheat pathogen Stagonospora nodorum has previously been shown to be a critical controlling element in disease ontogeny. In this study, iTRAQ and 2-D LC MALDI-MS/MS have been used to characterise protein expression changes in the S. nodorum gna1 strain versus the SN15 wild-type. A total of 1336 proteins were(More)