Kapileswar Seth

  • Citations Per Year
Learn More
The palladium-nickel binary nanocluster is reported as a new catalyst system for Suzuki-Miyaura cross-coupling of ortho-heterocycle-tethered sterically hindered aryl bromides. The inferior results obtained with the reported Pd/Ni salts/complexes or individual Pd/Ni nanoparticles as catalyst reveal the cooperative catalytic effect of the Pd and Ni(More)
The 2-(2-arylphenyl)benzoxazole moiety has been found to be a new and selective ligand for the enzyme cyclooxygenase-2 (COX-2). The 2-(2-arylphenyl)benzoxazoles 3a-m have been synthesized by Suzuki reaction of 2-(2-bromophenyl)benzoxazole. Further synthetic manipulation of 3f and 3i led to 3o and 3n, respectively. The compounds 3g, 3n, and 3o selectively(More)
Synergistic dual activation catalysis has been devised for epoxide phenolysis wherein palladium nanoparticles induce electrophilic activation via coordination with the epoxide oxygen followed by nucleophilic activation through anion-π interaction with the aromatic ring of the phenol, and water (reaction medium) also renders assistance through(More)
Three new, concise, and protecting group-free synthetic routes for (RS)- and (S)-lubeluzole are reported in higher (46-62%) overall yields compared to the reported procedures (6-35%). The key steps involve C-N bond formation via epoxide aminolysis and nucleophilic substitution of 2-chlorobenzothiazole with suitably designed precursor amines and are(More)
The benzazole scaffolds are present in various therapeutic agents and have been recognized as the essential pharmacophore for diverse biological activities. These have generated interest and necessity to develop efficient synthetic methods of these privileged classes of compounds to generate new therapeutic leads for various diseases. The biological(More)
A novel strategy for direct aryl hydroxylation via Pd-catalysed Csp(2)-H activation through an unprecedented hydroxyl radical transfer from 1,4-dioxane, used as a solvent, is reported with bio relevant and sterically hindered heterocycles and various acyclic functionalities as versatile directing groups.
  • 1