Kaoutar El Maghraoui

Learn More
Today’s enterprise data centers support thousands of missioncritical business applications composed of multiple distributed heterogeneous components. Application components exhibit complex dependencies on the configuration of multiple data center network, middleware, and related application resources. Applications are also associated with extended(More)
Large-scale, dynamic, and heterogeneous networks of computational resources (a.k.a. grids) promise to provide high performance and scalability to computationally intensive applications. To fulfill this promise, grid environments require complex resource management. We propose decentralized middlewaretriggered dynamic reconfiguration strategies to enable(More)
Malleability enables a parallel application's execution system to split or merge processes modifying granularity. While process migration is widely used to adapt applications to dynamic execution environments, it is limited by the granularity of the application's processes. Malleability empowers process migration by allowing the application's processes to(More)
The Internet is constantly growing as a ubiquitous platform for high-performance distributed computing. In this paper, we propose a new software framework for distributed computing over large scale dynamic and heterogeneous systems. Our framework wraps computation into autonomous actors, self organizing computing entities, which freely roam over the network(More)
Iterative applications are known to run as slow as their slowest computational component. This paper introduces malleability, a new dynamic reconfiguration strategy to overcome this limitation. Malleability is the ability to dynamically change the data size and number of computational entities in an application. Malleability can be used by middleware to(More)
Over the last two decades, efficient message passing libraries have been developed for parallel scientific computation. Concurrently, programming languages have been created supporting dynamically reconfigurable distributed systems over the heterogeneous Internet. In this paper, we introduce SALSAMPI, an actor programming language approach to scientific(More)
The Flash Translation Layer (FTL) is the core engine for Solid State Disks (SSD). It is responsible for managing the virtual to physical address mappings and emulating the functionality of a normal block-level device. SSD performance is highly dependent on the design of the FTL. For the last few years, several FTL schemes have been proposed. Hybrid FTL(More)
Solid-State Disks (SSDs) made out of Flash devices have gained a lot of prominence in recent years due to their increasing performance and endurance. A number of mechanisms are being proposed to improve the performance and reliability of these devices from technological and operating system perspectives, to integrate them into personal computers and(More)
Malleability enables a parallel application’s execution system to split or merge processes modifying granularity. While process migration is widely used to adapt applications to dynamic execution environments, it is limited by the granularity of the application’s processes. Malleability empowers process migration by allowing the application’s processes to(More)
Even though advances in hardware technologies are constantly pushing the limits of computational and storage resources, there are always applications whose computational demands exceed even the fastest technologies available. Hence, it has become critical to look into ways to aggregate efficiently distributed resources to benefit a single application.(More)