Kaori Sakakibara

Learn More
Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for(More)
Mammalian TOR (mTOR) regulates cell growth, proliferation, and migration. Because mTOR knock-outs are embryonic lethal, we generated a viable hypomorphic mouse by neo-insertion that partially disrupts mTOR transcription and creates a potential physiologic model of mTORC1/TORC2 inhibition. Homozygous knock-in mice exhibited reductions in body, organ, and(More)
Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus linked to prostate carcinoma and chronic fatigue syndrome. Here we report that NF-κB activation can markedly increase XMRV production. The inflammatory cytokine tumor necrosis factor alpha (TNF-α), which activates NF-κB, significantly augmented viral Gag protein production in(More)
Degradation of mitochondria via selective autophagy, termed mitophagy, contributes to mitochondrial quality and quantity control whose defects have been implicated in oxidative phosphorylation deficiency, aberrant cell differentiation, and neurodegeneration. How mitophagy is regulated in response to cellular physiology remains obscure. Here, we show that(More)
We isolated protoplasts from male and female gametophytes of a strictly dioecious strain of the coenocytic marine green alga Bryopsis plumosa. The protoplasts successfully developed into macrothalli. These in turn produced swimming cells, which appeared similar to biflagellated gametes even when the mixed protoplasts were comprised of protoplasm from male(More)
  • 1