Learn More
Although gamma-aminobutyric acid (GABA)C receptor rho1, rho2 and rho3 subunits are reportedly expressed in pyramidal and granule cells in the hippocampus at various developmental stages, it is not clear whether these three rho subunits are coexpressed in a single neuron. To attempt to answer this question, we performed single-cell RT-PCR for rho subunits(More)
The existence of Cl(-) channels in lymphocytes and neutrophils has been increasingly recognized, but the biological functions are not yet clear. We examined the effects of Cl(-) channel blockers on the cell proliferation and the cell cycle of human leukemic cell lines. The growth of leukemic cells was suppressed most efficiently by NPPB(More)
The effects of anxiolytic honokiol derivative, dihydrohonokiol-B (DHH-B), on amyloid beta protein (Abeta(25-35), 10 nM)-induced changes in Cl(-)-ATPase activity, intracellular Cl- concentration ([Cl-]i) and glutamate neurotoxicity were examined in cultured rat hippocampal neurons. DHH-B (10 ng/ml) recovered Abeta-induced decrease in neuronal Cl(-)-ATPase(More)
In our previous reports using primary cultured rat hippocampal neurons, pathophysiological concentrations (< or =10 nM) of amyloid beta proteins (Abetas) showed neurotoxicity via a phosphatidylinositol metabolism disorder, and soybean-derived phosphatidylinositol protected the neurons against the Abeta's neurotoxicity. In the present study, such a(More)
ClC-5 is a chloride channel known to be expressed in the kidney. We previously reported that ClC-5 mRNA was also strongly expressed in immature human myeloid cell line (HL-60), but weakly expressed in mature neutrophils. To clarify the underlying mechanisms, we examined the relationship between ClC-5 expression and cell cycle. Dimethyl sulfoxide treatment(More)
We previously found that pathophysiological concentrations (< or = 10 nm) of an amyloid beta protein (Abeta25-35) reduced the plasma membrane phosphatidylinositol monophosphate level in cultured rat hippocampal neurons with a decrease in phosphatidylinositol 4-monophosphate-dependent Cl- -ATPase activity. As this suggested an inhibitory effect of Abeta25-35(More)
In mice, apolipoprotein A-II (apoA-II) associates to form amyloid fibrils in an age-associated manner. We determined the complete nucleotide sequences of the apoA-II gene (Apoa2) cDNA in 41 inbred strains of mice including Mus musculus domesticus (laboratory mouse), Mus musculus castaneus, Mus musculus molossinus, Mus musculus musculus and Mus spretus.(More)
Chloride channels on immune cells reportedly play important roles in cell volume regulation, cell proliferation and immune functions, but they are not well characterized at the molecular level. We examined the expression of swelling-and/or pH-regulated chloride channels (ClC-2, 3, 4 and 5) in human leukemic cell lines [Jurkat and Hut-78 (T cells), Raji and(More)
Although macroprolactinemia due to antiprolactin (anti-PRL) autoantibodies is not uncommon among hyperprolactinemic patients, the pathogenesis of such macroprolactinemia is still unknown. We examined IgG subclasses of anti-PRL autoantibodies by enzyme immunoassay, and PRL phosphorylation and isoforms by Western blotting, mass spectrometry, and(More)
Macroprolactinemia is hyperprolactinemia in humans mainly due to anti-PRL (prolactin) autoantibodies and is a pitfall for the differential diagnosis of hyperprolactinemia. Despite its high prevalence, the pathogenesis remains unclear. In this study, we examined whether anti-PRL autoantibodies develop via immunization with homologous rat pituitary PRL in(More)