Kanwardeep Singh Kaleka

Learn More
Synaptic plasticity, the cellular basis of learning and memory, involves the dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses. One of the remaining key unanswered aspects of AMPAR trafficking is the mechanism by which synaptic strength is preserved despite protein turnover. In particular, the identity of AMPAR scaffolding molecule(s)(More)
Calcium (Ca(2+)) is an ion vital in regulating cellular function through a variety of mechanisms. Much of Ca(2+) signaling is mediated through the calcium-binding protein known as calmodulin (CaM). CaM is involved at multiple levels in almost all cellular processes, including apoptosis, metabolism, smooth muscle contraction, synaptic plasticity, nerve(More)
Dyshomeostasis of amyloid-β peptide (Aβ) is responsible for synaptic malfunctions leading to cognitive deficits ranging from mild impairment to full-blown dementia in Alzheimer's disease. Aβ appears to skew synaptic plasticity events toward depression. We found that inhibition of PTEN, a lipid phosphatase that is essential to long-term depression, rescued(More)
Learning-related potentiation of synaptic strength at Cornu ammonis subfield 1 (CA1) hippocampal excitatory synapses is dependent on neuronal activity and the activation of glutamate receptors. However, molecular mechanisms that regulate and fine-tune the expression of long-term potentiation (LTP) are not well understood. Recently it has been indicated that(More)
Increasing plasticity in neurons of the prefrontal cortex (PFC) has been proposed as a possible therapeutic tool to enhance extinction, a process that is impaired in post-traumatic stress disorder, schizophrenia, and addiction. To test this hypothesis, we generated transgenic mice that overexpress neurogranin (a calmodulin-binding protein that facilitates(More)
Amyloid β (Aβ) is widely considered one of the early causes of cognitive deficits observed in Alzheimer's disease. Many of the deficits caused by Aβ are attributed to its disruption of synaptic function represented by its blockade of long-term potentiation (LTP) and its induction of synaptic depression. Identifying pathways that reverse these synaptic(More)
  • 1